

Agilent BioHPLC Columns

Your essential resource for biomolecule analysis

Who We Are. What We Do.

Across the lab, around the world, with you every step of the way.

CrossLab is an Agilent capability that integrates services, consumables and lab-wide resource management to help laboratories improve efficiency, optimize operations, increase instrument uptime, develop user skill, and more.

Agilent CrossLab supports Agilent and select non-Agilent instruments and provides consultative support for workflow enablement, lab analytics, compliance, inventory management and asset management, including relocation services.

Learn more about Agilent CrossLab, and see examples of insight that leads to great outcomes, at **www.agilent.com/crosslab**

Look out for CrossLab stories from the lab to find out how we can help.

Real stories from the lab

Agilent CrossLab service engineers strive to deliver insight at every interaction, helping users improve efficiency, optimize resources, increase instrument uptime, and develop user skill. Learn how Agilent CrossLab has brought insight and value to customers around the world.

www.agilent.com/chem/crosslabstories

Table of Contents

What is a biomolecule?2What is a biocolumn?3Column selection flowchart5Biomolecule Separations6Protein separations12Peptide separations14AdvanceBio columns: for faster, more consistent16DNA and RNA oligonucleotide separations17Amino acid analysis19Amino acid analysis20Method Development Guidelines21Primary structure analysis methods21Reversed-phase LC/MS methods23Charge variant analysis methods24Charge variant analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities of peptides and oligonucleotides36	Biocolumn Selection Guidelines	1
Column selection flowchart5Column selection flowchart5Biomolecule Separations6Protein separations12Peptide separations12Peptide separations14AdvanceBio columns: for faster, more consistent16biopharmaceutical analysis16DNA and RNA oligonucleotide separations17Amino acid analysis19Amino acid analysis20Method Development Guidelines21Primary structure analysis methods23Charge variant analysis methods23Charge variant analysis methods24Charge variant analysis methods27Glycan and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	What is a biomolecule?	2
Biomolecule Separations6Protein separations12Peptide separations12Peptide separations14AdvanceBio columns: for faster, more consistent14biopharmaceutical analysis16DNA and RNA oligonucleotide separations17Amino acid analysis19Amino acid analysis19Amino acids20Method Development Guidelines21Primary structure analysis methods23Charge variant analysis methods23Charge variant analysis methods24Charge variant analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II LC with high speed pump331260 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	What is a biocolumn?	3
Protein separations6Glycan separations12Peptide separations14AdvanceBio columns: for faster, more consistent16biopharmaceutical analysis16DNA and RNA oligonucleotide separations17Amino acid analysis19Amino acid analysis20Method Development Guidelines21Primary structure analysis methods23Charge variant analysis methods23Charge variant analysis methods24Charge variant analysis methods with Agilent BufferAdvisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Column selection flowchart	5
Glycan separations12Peptide separations14AdvanceBio columns: for faster, more consistent14biopharmaceutical analysis16DNA and RNA oligonucleotide separations17Amino acid analysis19Amino acid analysis20Method Development Guidelines21Primary structure analysis methods23Charge variant analysis methods24Charge variant analysis methods24Charge variant analysis methods with Agilent BufferAdvisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Biomolecule Separations	6
Peptide separations14AdvanceBio columns: for faster, more consistent14biopharmaceutical analysis16DNA and RNA oligonucleotide separations17Amino acid analysis19Amino acids20Method Development Guidelines21Primary structure analysis methods23Charge variant analysis methods23Charge variant analysis methods24Charge variant analysis methods24Advisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Protein separations	6
AdvanceBio columns: for faster, more consistentbiopharmaceutical analysis16DNA and RNA oligonucleotide separations17Amino acid analysis19Amino acid analysis20Method Development Guidelines21Primary structure analysis methods21Reversed-phase LC/MS methods23Charge variant analysis methods24Charge variant analysis methods with Agilent BufferAdvisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Glycan separations	12
biopharmaceutical analysis16DNA and RNA oligonucleotide separations17Amino acid analysis19Amino acid analysis20Method Development Guidelines21Primary structure analysis methods23Charge variant analysis methods23Charge variant analysis methods24Charge variant analysis methods with Agilent Buffer24Advisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Peptide separations	14
DNA and RNA oligonucleotide separations17Amino acid analysis19Amino acid analysis19Amino acids20Method Development Guidelines21Primary structure analysis methods23Charge variant analysis methods24Charge variant analysis methods with Agilent BufferAdvisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities36	AdvanceBio columns: for faster, more consistent	
Amino acid analysis19Amino acids20Method Development Guidelines21Primary structure analysis methods21Reversed-phase LC/MS methods23Charge variant analysis methods24Charge variant analysis methods with Agilent Buffer26Advisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	biopharmaceutical analysis	16
Amino acids20Method Development Guidelines21Primary structure analysis methods21Reversed-phase LC/MS methods23Charge variant analysis methods24Charge variant analysis methods with Agilent Buffer26Advisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	DNA and RNA oligonucleotide separations	17
Method Development Guidelines21Primary structure analysis methods21Reversed-phase LC/MS methods23Charge variant analysis methods24Charge variant analysis methods with Agilent Buffer26Advisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities36	Amino acid analysis	19
Primary structure analysis methods21Reversed-phase LC/MS methods23Charge variant analysis methods24Charge variant analysis methods with Agilent Buffer26Advisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities36	Amino acids	20
Reversed-phase LC/MS methods23Charge variant analysis methods24Charge variant analysis methods with Agilent Buffer26Advisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities36	Method Development Guidelines	21
Charge variant analysis methods24Charge variant analysis methods with Agilent Buffer26Advisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Primary structure analysis methods	21
Charge variant analysis methods with Agilent BufferAdvisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities36	Reversed-phase LC/MS methods	23
Advisor software26Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Charge variant analysis methods	24
Aggregation and fragment analysis methods27Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Charge variant analysis methods with Agilent Buffer	
Glycan and hydrophilic/glycopeptide analysis29Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Advisor software	26
Titer determination and cell culture optimization methods30High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Aggregation and fragment analysis methods	27
High sensitivity capillary column methods31Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	Glycan and hydrophilic/glycopeptide analysis	29
Agilent Instruments for Protein Identification and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure AnalysisAccurately determine amino acid sequence and post-translational modifications, and analyze impurities	Titer determination and cell culture optimization methods	30
and Impurity Profiling321260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure AnalysisAccurately determine amino acid sequence and post-translational modifications, and analyze impurities	High sensitivity capillary column methods	31
1260 Infinity II bio-inert LC321290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure AnalysisAccurately determine amino acid sequence and post-translational modifications, and analyze impurities	Agilent Instruments for Protein Identification	
1290 Infinity II LC with high speed pump331260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure AnalysisAccurately determine amino acid sequence and post-translational modifications, and analyze impurities	and Impurity Profiling	32
1260 Infinity II LC with binary pump341260 Infinity II Prime LC35Primary Structure Analysis36Accurately determine amino acid sequence and post-translational modifications, and analyze impurities36	1260 Infinity II bio-inert LC	32
1260 Infinity II Prime LC 35 Primary Structure Analysis 36 Accurately determine amino acid sequence and post-translational modifications, and analyze impurities 36	1290 Infinity II LC with high speed pump	33
Primary Structure Analysis 36 Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	1260 Infinity II LC with binary pump	34
Accurately determine amino acid sequence and post-translational modifications, and analyze impurities	1260 Infinity II Prime LC	35
post-translational modifications, and analyze impurities	Primary Structure Analysis	36
	Accurately determine amino acid sequence and	
of peptides and oligonucleotides 36	post-translational modifications, and analyze impurities	
	of peptides and oligonucleotides	36

AdvanceBio RP-mAb	39
ZORBAX 300 Å StableBond	44
ZORBAX 300 Å Extend-C18	53
Poroshell 300	57
AdvanceBio Peptide Mapping	62
Agilent peptide quality control standard	66
PLRP-S	67
AdvanceBio Desalting-RP	73
AdvanceBio Oligonucleotide	74
AdvanceBio Oligonucleotide standards	76
Intact Analysis Using Hydrophobic Interaction	
Chromatography	78
AdvanceBio HIC	78
Charge Variant Analysis	80
Purify proteins and other charged molecules	80
Applying IEX to charge variant analysis	80
Bio MAb HPLC columns	83
Bio IEX HPLC columns	88
PL-SAX Strong Anion-Exchange columns	95
PL-SCX Strong Cation-Exchange columns	99
Bio-Monolith Ion-Exchange HPLC columns	102
Aggregation and Fragment Analysis	106
Accurately determine biomolecule aggregation,	
fragmentation, and chemical ligation/modification	106
Applying SEC to aggregation studies	106
Applying SEC to quantitation	
and molecular weight determination	107
Which SEC column is right for your application?	109
AdvanceBio SEC	110
AdvanceBio SEC standards	116
Bio SEC-3	117
Bio SEC-5	123
ProSEC 300S	127
ZORBAX GF-250 and GF-450 gel filtration columns	128

(Continued)

Table of Contents (continued)

Glycosylation Characterization	130
AdvanceBio Glycan Mapping columns	132
N-Glycan standards	136
Hydrophilic and glycopeptide analysis	138
Titer Determination	140
Bio-Monolith HPLC columns	140
Cell Culture and Amino Acid Analysis	145
Agilent solutions for spent media analysis	146
AdvanceBio Amino Acid Analysis (AAA)	147
AdvanceBio Amino Acid Analysis standards and kit	149
AdvanceBio MS Spent Media	150
ZORBAX Eclipse Amino Acid Analysis (AAA)	152
Protein Depletion	155
Agilent protein fractionation system and proteomics reagents	155
Multiple affinity removal system	156
Multiple affinity removal system starter kits	159
Specialty Dimensions	160
Capillary and nano columns	160
ZORBAX Bio-SCX Series II	166

MicroBore (1.0 mm id) columns	169
2D-LC	172
Offline column regeneration	172
Comprehensive 2D-LC	174
Purification—Prep HPLC	176
mRP-C18 high-recovery protein columns	178
ZORBAX PrepHT	180
PLRP-S for prep to process	182
Bio MAb and Bio IEX	188
PL-SAX and PL-SCX for prep to process	190
Peptide purification	194
VariTide RPC columns for synthetic peptides	194
VariPure IPE	195
Load & Lock preparative HPLC columns	196
Bio SEC	198
Agilent Solutions	200
Agilent CrossLab Services	202

Tips and tools

For applications examples spanning the biocolumn portfolio, please see the Critical Quality Attributes Application Compendium at **www.agilent.com/chem/cqa-applications**

Biocolumn Selection Guidelines

Biotherapeutics have enormous potential to improve human health. The number of approved protein and antibody therapeutics continues to grow around the world as this important therapeutic class addresses unmet medical needs. But discovery and development of biopharmaceuticals is difficult. Scientists face many challenges and must not only stay abreast of advances in knowledge and improvements in technology, but also navigate the maze of shifting government regulations. Making good decisions fast is critical. At every stage in the process, from disease research to QA/QC and manufacturing, Agilent can help you make the right choices for moving therapeutics successfully to market. And it's not just because we build reliable instruments and consumables that provide accurate, reproducible results. We understand the biopharmaceutical workflow and provide families of products that work together seamlessly—as engines of research, discovery, and development—to move candidate biopharmaceuticals forward.

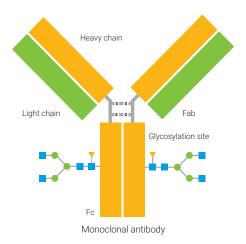
Given that protein biopharmaceuticals are very heterogeneous, they will require a number of chromatographic methods to accurately characterize the active pharmaceutical ingredient (API). Methods include size exclusion chromatography for the quantitation of dimers and aggregates, and ion-exchange chromatography for charge variant analysis. As part of the full characterization, it will be necessary to look at primary amino acid sequence and any post-translational modification to the sequence that may occur during purification or formulation steps. To enable complete, reproducible, and high-quality analysis for key characterization workflows, Agilent provides a broad range of columns and supplies.

This comprehensive guide will help you find the right column for your characterization workflow. We have also included advice and tips on method development, solvent choice, mobile phase modification, optimization, and many example separations, all to assist you in column selection and method development.

Agilent has complete solutions for your needs. These include the Agilent 1260 Infinity II bio-inert LC with a metal-free sample path and the Agilent 1290 Infinity II LC, designed to provide highest speed, resolution, and ultrasensitivity for UHPLC applications. Biomolecules may be complex in structure, but their analysis is simplified by using Agilent HPLC columns, systems, and supplies.

What is a biomolecule?

Biomolecules are compounds made by living organisms. They can range in size from amino acids and small lipids to large polynucleotides, such as DNA or RNA.


In this section, we deal with the separation of:

Proteins—separation based on size with size exclusion chromatography, charge with ion-exchange chromatography, and hydrophobicity with reversed-phase or hydrophobic interaction chromatography.

Peptides—biocolumns for the analysis and purification of the full range of peptides, including hydrophobic, hydrophilic, basic, and acidic peptides across the full size range. Also, columns for peptide mapping by HPLC and UHPLC.

DNA/RNA oligonucleotides—reversed-phase and ion-exchange options for DNA and RNA oligos, and with particle pore sizes to cover the full range of oligonucleotide sizes, from small synthetic oligos to large plasmids.

Amino acids—the AdvanceBio Amino Acid Analysis columns provide a high-efficiency solution for analysis of 24 amino acids. Typical analysis times range from 14 minutes, with a 75 mm column, to 24 minutes with a 150 mm column.

What is a biocolumn?

Biochromatography columns, or biocolumns, are liquid chromatography columns used for the separation of biological compounds, such as peptides and proteins, oligonucleotides and polynucleotides, and other biomolecules and complexes. Biocolumns are specifically designed for biomolecule analysis with larger pore sizes to accommodate the larger molecule sizes. Media are designed to minimize nonspecific binding of analytes for improved recovery. Separation mechanisms are chosen to either retain biological function so bioactivity is not lost during analysis, or to deliberately denature for primary structure characterization.

Agilent's biocolumn offering provides solutions for all the major characterization techniques required for your biomolecule analysis. These include:

Titer determination

Use unique technology, such as AdvanceBio Bio-Monolith Protein A, to perform titer determination and cell line optimization.

Intact and subunit purity using reversed-phase Use key technologies such as AdvanceBio RP-mAb, ZORBAX RRHD 300 Å, and PLRP-S, for confidence in results from primary structural characterization through analysis of intact or fragmented proteins.

Charge variant analysis

Agilent ion-exchange columns include optimized chemistries for monoclonal antibody analysis, such as Bio MAb and Bio IEX for accurate isoform analysis.

Glycan analysis

Agilent hydrophilic interaction chromatography (HILIC) columns deliver accurate and reproducible glycan and glycopeptide analysis.

Intact analysis using hydrophobic interaction Agilent AdvanceBio HIC columns will resolve various protein variants (PTMs) including oxidation in mAbs and drug-antibody species observed in ADCs.

Peptide mapping

Detect and identify key post-translational modifications in digested protein samples using AdvanceBio Peptide Mapping.

Aggregate and fragment analysis

AdvanceBio SEC accurately measures aggregates (such as dimers, trimers, and tetramers, and so on) and separates low molecular excipients and impurities from larger molecular weight proteins.

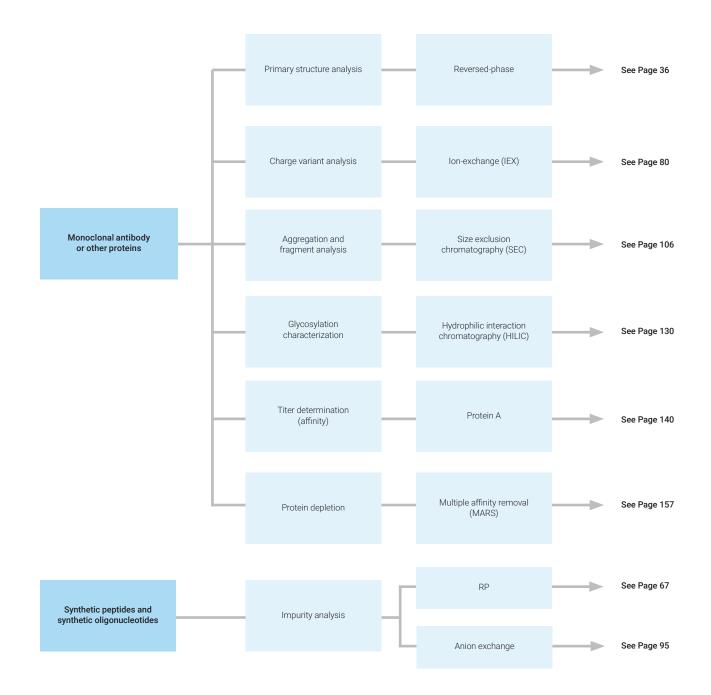
Amino acid and cell culture analysis

Analyze critical cell culture media components with either an LC/UV-based workflow with AdvanceBio AAA or an LC/MS-based workflow with AdvanceBio MS Spent Media.

Oligonucleotide analysis Robust, high-efficiency solutions for DNA/RNA analysis.

Agilent AdvanceBio columns are designed to advance accuracy and speed for your characterization of monoclonal antibodies and other intact proteins, aggregation with SEC, charge variants with IEX, intact mass, primary structure, and post-translational modifications (PTMs) by reversed-phase, and cleaved glycan analysis by hydrophilic interaction chromatography.

This guide provides more details on the complete Agilent biocolumn portfolio, along with information on choices within the AdvanceBio family to accurately characterize biotherapeutics.

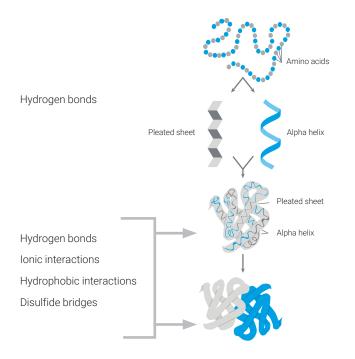

Tips and tools

To learn more about our AdvanceBio family of columns and various tools to advance your characterization needs, visit: www.agilent.com/chem/advancebio

Column selection flowchart

The flowchart below indicates the page numbers that will take you to the selection guides in the individual chapters to help you choose the best column for your biomolecule application.

There are various guidelines that can be followed to help with the selection of the optimum column for a biomolecule separation. The starting point is the size of the molecule, as this determines the pore size of the HPLC method used for the separation. Secondly, consider the solubility of the molecule. Thirdly, note the separation mechanism, size, hydrophobicity, and charge.


Biomolecule Separations

Protein separations

Proteins are complex molecules that require multiple techniques to provide full characterization. They exist as three-dimensional structures and these structures confer their biological activity.

The sequence of the amino acid chains defines the primary structure of the protein. Hydrogen bonding between amino acids of the primary structure then confers a secondary structure, typically in the form of alpha helices and pleated sheets. A further series of interactions, hydrogen bonding, ionic, hydrophobic, and disulfide bridges, between regions of the secondary structure, then provides the tertiary protein structure, or three-dimensional conformation. If the protein is composed of a number of amino acid chains, the interaction between these chains gives the quaternary structure.

When looking at methods for protein characterization, it is therefore clear from Figure 1 that techniques will be required that characterize the protein in its native state, without disrupting the tertiary and quaternary structures. We also need techniques for assessing the primary amino acid sequence, in the fully denatured state, with the three-dimensional structure stripped away.

Primary protein structure

A sequence of amino acids.

Secondary protein structure

Occurs when the sequence of amino acids are linked by hydrogen bonds.

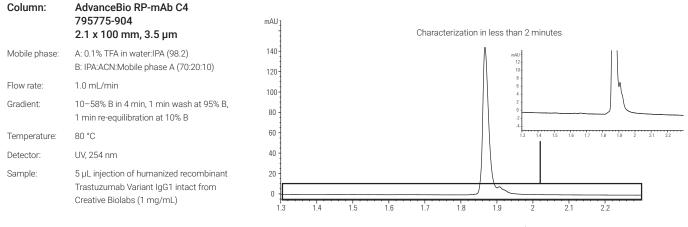
Tertiary protein structure

Occurs when certain attractions are present between alpha helices and pleated sheet.

Quaternary protein structure

A protein consisting of more than one amino acid chain.

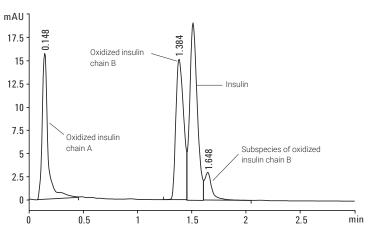
6


The environment of the protein can influence, stabilize, or disrupt its structure. Factors to consider include pH, temperature, salt concentrations, aqueous or organic solvent content, and for some proteins, the presence of a stabilizing small molecule or metal ions. Protein structure can also be disrupted by the use of sulfhydryl reducing agents to break -S-S- bonds or chaotropic agents, such as urea or guanidine HCI. With the complexity of proteins and the intramolecular interactions that determine the three-dimensional structure, you can also expect that there will be intermolecular associations between protein molecules and other molecular entities and the surfaces with which they come into contact. This can result in protein complexes, aggregation (with possible precipitation), and deposition on surfaces, including those of the HPLC column and system. Therefore, you should consider the handling and environment in which the protein is maintained.

Protein Column Selection Guide

Application	Technique	Agilent Columns	Notes
Primary structure analysis	UHPLC/HPLC reversed-phase separations	AdvanceBio RP-mAb PLRP-S ZORBAX RRHD 300 Å Poroshell 300 Å ZORBAX 300 Å AdvanceBio Peptide Mapping	Reversed-phase separations require (or cause) denaturing of the protein to obtain detailed information about the amino acid sequence and amino acid modifications (including post-translational modifications).
Charge variant analysis	lon-exchange separations	Agilent Bio IEX Agilent Bio MAb PL-SAX PL-SCX	The ratio of individual amino acids determines the net charge of the protein molecule. The pH at which the net charge is zero is called the isoelectric point (pl). When the solution pH is less than the pl, the protein will be positively charged (acidic), and when the solution pH is greater than the pl, the protein is negatively charged (basic). For ion-exchange analysis, we recommend the eluent pH be at least one pH unit away from its pl. Protein analysis using ionexchange columns requires buffered mobile phase and either salt gradients or pH gradients for elution.
Aggregation and fragment analysis	Size exclusion separations	AdvanceBio SEC Bio SEC-3 Bio SEC-5	Aggregates in protein biopharmaceuticals are of major concern, as they can induce an immunogenic response and can influence the composition of the final formulation.
Glycosylation characterization	Hydrophilic interaction chromatography	AdvanceBio Glycan Mapping ZORBAX RRHD 300 HILIC	Understanding glycosylation and glycan structures of proteins and mAbs is growing in importance due to the effect of immunogenicity and safety of the biotherapeutic. HILIC chromatography provides orthogonal information to reversed-phase columns as it retains the hydrophilic portion of the sample.
Titer determination	Affinity separation	Bio-Monolith Protein A Bio-Monolith Protein G	To monitor monoclonal antibody titer and yield from cell-culture supernatants before expensive preparative and large amounts of protein A are employed, a small (analytical) scale procedure is necessary to determine the titer of monoclonal antibody for the optimal time for harvest of the monoclonal antibody products.
Protein depletion	Affinity purification	MARS Human-14 MARS Human-7 MARS Human-6 MARS Human-6 High Capacity MARS Human-2 MARS Human-1 MARS Mouse-3	Remove the high-abundance proteins from biological samples. Removal of these abundant proteins improves the subsequent LC/MS and electrophoretic analysis of the sample by effectively expanding the dynamic range.

Biomolecule Separations


High speed, high resolution separation of Trastuzumab Variant IgG1

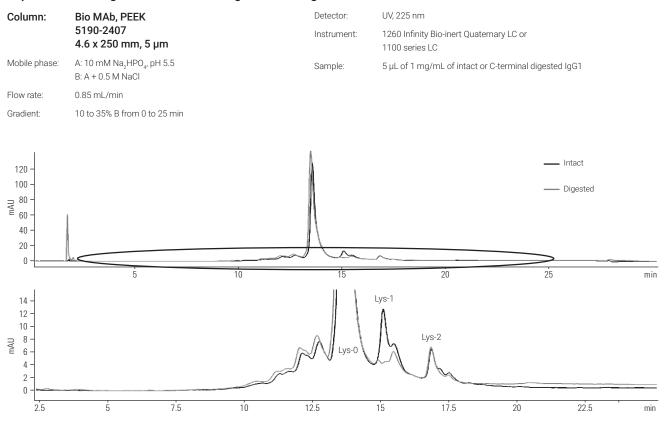
AdvanceBio RP-mAb C4 provides a sharp peak and resolves fine detail in less than two minutes.

Higher resolution of oxidation

Column:	ZORBAX RRHD 300SB-C18 857750-902 2.1 x 50 mm, 1.8 μm
Mobile phase:	A: 0.1% TFA B: 0.01% TFA + 80% ACN
Flow rate:	1.0 mL/min
Gradient:	33-50% B, 0-4 min
Detector:	1290 Infinity LC with diode array detector at 280 nm
Sample:	Insulin, insulin chain A and chain B, oxidized (BSA, Sigma-Aldrich, Corp., 1 mg/mL)

Oxidized insulin chains are resolved from insulin in under two minutes using the ZORBAX RRHD 300SB-C18 2.1 x 50 mm, 1.8 μ m column.

Intact mAb monomer and dimer separation


Column:	Bio SEC-3, 300 Å 5190-2511 7.8 x 300 mm, 3 μm	mAU 300 —	Monomer
Flow rate:	1.0 mL/min	250 —	V V
Injection:	5 µL		
Temperature:	Ambient	200 —	Dimer
Detector:	UV, 220 nm		
Buffer:	Sodium phosphate buffer 150 mM, pH 7.0	150 —	
Isocratic:	0-100% buffer from 0-30 min	100 —	
		50	
		4	6 8 10 12 14 min

VLC_MD_Mab

Tips and tools

Agilent recognizes the extraordinarily complicated and labor-intensive work that you do. We can help. Further information can be found in *BioPharma Workflow Solutions: How Agilent Helps Resolve Complex Analytical Challenges* (publication 5991-5235EN). www.agilent.com/search

Biomolecule Separations

Separation of charge variants of human IgG1 with salt gradient

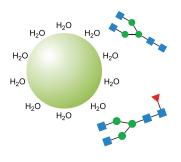
Separation of intact and C-terminal digested IgG1 using an Agilent Bio MAb 5 μm column.

min

Titer determination of IgG1 from supernatant of CHO-cell

Column:	Bio-monolith Protein A 5069-3639 5.2 x 4.95 mm	mAU 3500 -		Trastuzumab originator
Mobile phase:	A: 50 mM phosphate, pH 7.4 B: 100 mM citric acid, pH 2.8	3000		Clone 9
Flow rate:	1 mL/min	2500 -		
Gradient:	Time (min) % B 0 to 0.5 0 (binding) 0.6 to 1.7 100 (elution) 1.8 to 3.5 0 (regeneration)	2000 Binding	Elution	Regeneration
Injection volume:	50 µL	1000		
Detector:	UV, 280 nm			
Fraction collection:	Time-based			2 2.5 3

AdvanceBio Bio-Monolith Protein A chromatogram of a Trastuzumab-producing CHO clone, clone 9, and of a Trastuzumab originator diluted in 50 mM Na-phosphate pH 7.4 to 0.2 mg/mL. Note that the supernatant was diluted 1:1 in phosphate buffer.


Glycan separations

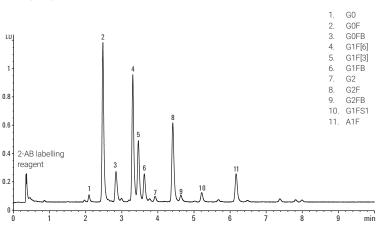
Glycan profiling

Glycan analysis is required for the characterization of biotherapeutics as the glycosylation pattern can affect the safety and efficacy of the final product.

The intact glycoprotein is treated with an enzyme such as PNGase F to cleave the glycans from the protein. The glycans are then labeled with a fluorescent dye, as they are not inherently visible by UV or fluorescence. Following labeling, a cleanup step is performed to remove excess reagent and deglycosylated protein from the sample mixture. The purified, released glycan sample is then most commonly analyzed with hydrophilic interaction chromatography (HILIC) with either fluorescence or mass spectrometry detection.

The chromatographic profile is characteristic of the starting glycoprotein samples, and can vary widely in complexity. The AdvanceBio Glycan Mapping columns are well suited to delivering high resolution separation in a short amount of time.

Tips and tools


Agilent bio-inert supplies provide a metal-free sample flow path, which minimizes interactions with your biomolecules.

Visit: www.agilent.com/chem/bio-inert-uhplc

Super-fast glycan analysis: less than ten minutes with 1.8 µm particles

Column:	Agilent AdvanceBio Glycan Mapping 859700-913 2.1 x 150 mm, 1.8 μm
Mobile phase:	A: 100 mM NH ₄ Formate, pH 4.5 B: ACN
Injection volume:	2 μL in 70:30 ACN:100 mM $\rm NH_4Formate$
Fluorescence detection:	Excitation = 260 Emission = 430
Instrument:	Agilent 1290 Infinity LC with Agilent 1260 Infinity FLD
Sample:	2-AB labeled N-linked Human IgG glycan library (p/n 5190-6996)

Time	%A	%В	Flow Rate (mL/min)
0	25	75	1.0
12	40	60	1.0
12.15	60	40	0.5
12.5	60	40	0.5
12.9	25	75	0.5
13.05	25	75	1.0
15	25	75	1.0

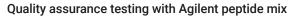
Fast, high resolution glycan mapping (1.8 μm column). This standard is used to test all AdvanceBio Glycan Mapping columns.

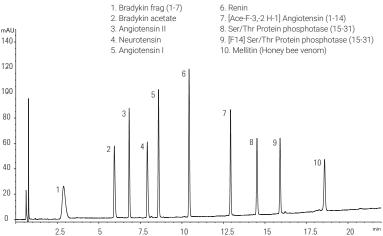
Peak	Glycan	Structure	Peak	Glycan	Structure	
1	G0	\$***	9	G2F	2-1	FucoseGalactose
2	G0F	12×++	10	G2FB		 Mannose N-acetylglucosamine
3	G0FB		11	G1FS1	+{=-	N-acetylneuramic acid
4	G1F	•	12	A1	+{ <mark>-==</mark>	
5	G1F'	•	13	A1F	+-{-=+	
6	G1FB		14	A1FB		
7	G1FB Man6	•	15	A2	↓ • • • • • • • • • • •	
8	G2		16	A2F	***** *****	
			17	A2FB	← - = • Y	

Peptide separations

Peptide mapping

Peptide mapping is required for the characterization of proteins. It is used to confirm the identity of a protein and to identify and quantify post-translational modifications.


The purified protein is first digested using an enzyme, such as trypsin, yielding a range of peptide fragments. The specificity of the enzyme cleavage produces a fingerprint of peptides which is characteristic of that protein. Identification of the peptide fragments confirms the identity of the protein, and changes in the profile of the peptide digest can be used to identify post-translational modifications to the protein that may have occurred during the manufacturing or purification processes.


Reversed-phase UHPLC/HPLC is the preferred technique for the analysis of peptide digests with either MS or UV detection. LC/MS is used for the identification of the peptide fragments and determination of sequence coverage whereas LC/UV is more commonly used for peptide map comparisons in the monitoring/QC segments.

Peptide digests are complex mixtures, and for complete coverage, that is, resolution of the individual peptides, a high efficiency/high resolution column is required. AdvanceBio Peptide Mapping columns are designed to provide high-resolution peptide maps for protein identification and determination of post-translation modifications. These columns let you quickly resolve and identify amino acid substitutions/modifications in a protein primary sequence.

Column:		AdvanceBio Peptide Mapping 653750-902 2.1 x 150 mm, 2.7 µm				
		2.1 x 130 mm, 2.7 μm	14			
	Flow rate:	0.5 mL/min				
	Injection:	3μL	12			
	Gradient:	A, water (0.1% TFA), B, ACN (0.1% TFA), 0-25 min, 15–65% B; 25–26 min, 65–95% B	10			
	Temperature:	55 °C	80			
	Detector:	220 nm	60			
	Sample:	Peptide Mapping Standards Mix (0.5-1.0 μg/μL per peptide) p/n 5190-0583	40			

Test mix used for every batch of AdvanceBio Peptide Mapping media. The mixture contains 10 hydrophilic, hydrophobic, and basic peptides, ranging in molecular weight from 757 to 2845 Da. Every column is also tested with a small-molecule probe to ensure efficiency.

Tips and tools

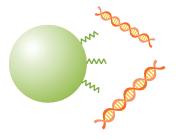
Agilent InfinityLab well plates and sealing mats are the ideal sample containers for your high-throughput LC/MS applications.

Visit: www.agilent.com/chem/well-plates

AdvanceBio columns: for faster, more consistent biopharmaceutical analysis

AdvanceBio Peptide Mapping columns are part of Agilent's growing state-of-the-art family of biocolumns. They are designed to deliver consistent, exceptional performance for the separation and characterization of peptides and proteins, antibodies, conjugates, new biological entities, and biopharmaceuticals. The science behind AdvanceBio columns helps to advance accuracy and productivity that support faster analysis and efficiency in your lab.

For ordering information on the Agilent Peptide Mapping solution, turn to Page 62.


Tips and tools

For more information on Agilent biocolumns, visit: www.agilent.com/chem/bioHPLC

DNA and RNA oligonucleotide separations

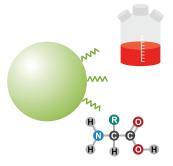
There is a renewed interest in oligonucleotides (oligos) as they are used in more and more applications, including potential therapeutics. The synthesis workflow is similar to that used for the more established synthetic peptide production, that is, an activated solid phase synthesis resin is used with sequential addition of specific nucleotides to build the desired sequence.

The nucleotide building blocks are protected at the 5' hydroxyl end with a dimethoxytrityl (DMT) group and the cleaved target oligo will have this protected group still attached. As DMT is hydrophobic, it is a useful handle that can be used for the first stage. To increase the stability of the oligonucleotide, particularly to enzyme degradation, it may be chemically modified, for example by replacing oxygen with sulfur to produce phosphorothioates. When using chemical synthesis to produce biomolecules, the coupling efficiency of each additional cycle is never 100%. The sample, after cleavage from the solid phase synthesis support, will contain deletion sequences, oligos where one or more residues are missing, and a certain amount of larger oligos produced by double coupling or branching. The sample mixture is complex and high-efficiency techniques are required for its analysis.

There are three UHPLC/HPLC techniques that are routinely used for oligonucleotide separations:

Trityl-on—This procedure is relatively simple to perform and separates the full-length target oligo, which still has the DMT group attached, from the deprotected failure sequences. The analytical information obtained is limited and this is considered to be a purification method.

Ion-exchange separations of the trityl-off, deprotected oligos—This method uses the negative charge on the backbone of the oligo to facilitate the separation. Resolution is good for the shorter oligos, but decreases with increasing chain length. Aqueous eluents are used, but oligos are highly charged and high concentrations of salt are needed to achieve elution from the column.

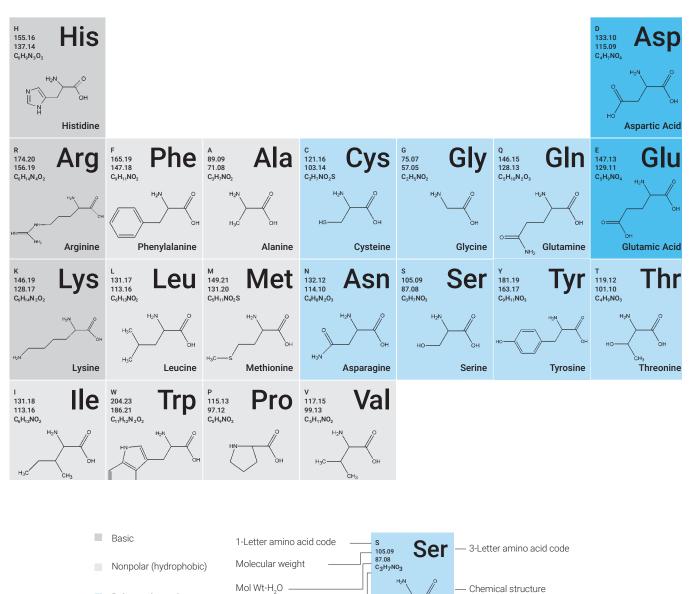

Ion-pair reversed-phase separation of the trityl-off, deprotected oligos—This technique uses organic solvents and volatile ion-pairing agents, and is suitable for LC/MS. The technique is best performed with high-efficiency particles. Conditions that fully denature the oligos and prevent association with complementary sequences are required. Thus, the separation is best performed at elevated temperatures.

DNA and RNA Oligonucleotide Column Selection

Application	Technique	Agilent Columns	Notes
Trityl-on/trityl-off oligonucleotides	Trityl-on	PLRP-S 50 µm media	Separates due to differences in hydrophobicity. Ideal for the separation of trityl-on from trityl-off oligos and is also used for ion-pair reversed-phase separations of deprotected oligos.
Deprotected oligonucleotides	lon-pair reversed-phase separation of the trityl-off, deprotected oligos	PLRP-S 3 µm to 50 µm AdvanceBio Oligonucleotide	_
Aggregation and fragment analysis	lon-exchange separations of the trityl-off, deprotected oligos	PL-SAX 1000 Å	Separates deprotected oligos under denaturing high pH conditions. The quaternary amine functionality on the polymeric particles enables ion-exchange separations at high pH, improving chromatography for self-complementary sequences.

Amino acid analysis

The AdvanceBio AAA high efficiency column separates amino acids following an updated and improved protocol. During the production of proteins the cell culture medium is monitored to ensure that the correct nutrient balance and levels are maintained for the expression of the product protein. Amino acids are critical components of the feedstock and so must be monitored and adjusted during the production process. Reversed-phase chromatography is the primary technique used for amino acid analysis. Total analysis from injection to injection can be achieved in 14 minutes (9 minute analysis time) on shorter, 75 mm columns and 24 minutes (18 minute analysis time) on the 150 mm column. Sensitivity (5 to 50 pmol with diode array or fluorescence detectors) and reliability are achieved using both OPA- and FMOC-derivatization chemistries in one fully automated procedure using any Agilent LC.


AdvanceBio Amino Acid Analysis

UV, 338 and 262 nm

Detector:

Column:	65595	nceBio Amino Acid Analysis 50-802 100 mm, 2.7 μm	mAU]		1 nmol amino acid standards 4.6 x 100 mm column						
Mobile phase:		nM Na ₂ HPO ₄ and 10mM Na ₂ B ₄ O ₇ , pH 8.2 tonitrile:methanol:water (45:45:10, v:v:v:)	350 -								
Flow rate:	1.5 mL/	/min	300 -	< <u>□</u>		DAD = 338 nm	1			→ ←	DAD = 262 nm
Injection:	3 µL		250 -	Aspartic acid		ə				Lysine	
Gradient:	Time	%В	200 -	Asp	Asparagine 	- Arginine		- Cystine		1	
	0	2	1	acid	Serine Serine Glycine sonine	Alanine	Tyrosine	- Valine - Methionine line	han alanine ne	e roline	
	0.35	2	150 -	Glutamic acid	The Histin	Ala	ےً ا	- Valine Meth	- Tryptophan - Phenylalanine Isoleucine	- Leucine Hydroxyproline	Ð
	13.4	57	100	E I				- Norvaline		Ť	- Sarcosine Proline
	13.5	100	50 -								Prol
	15.7	100	1	_uhl		LUL					Mum
	15.8	2	۰L		2	4		· · ·	8		
	18	stop	ç	Separation o	f 1 nmol amino aci	id standa	rds usin	the Advand	eBio Ar	nino Acid Ai	nalvsis column
Column temperature:	40 °C							,			

Amino acids

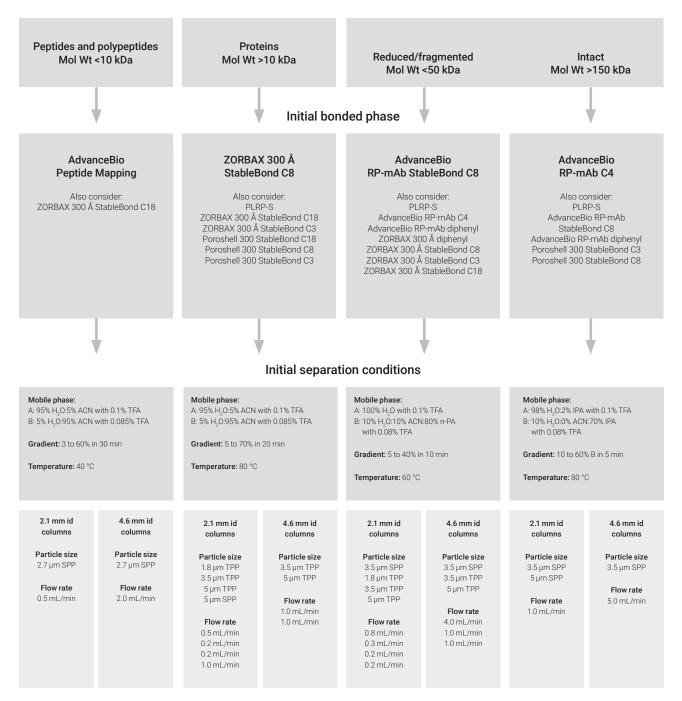
Serine

Chemical name

Molecular formula

Polar, uncharged

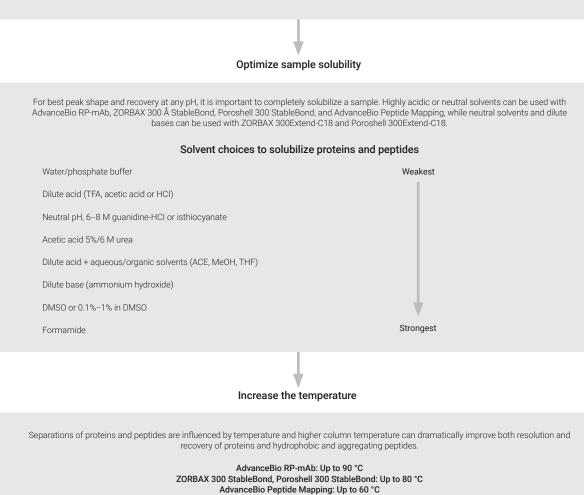
Acidic

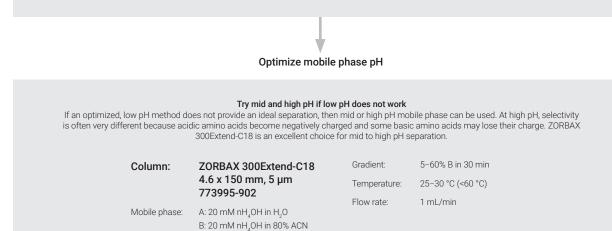

Agilent BioHPLC Columns

20

Method Development Guidelines

Primary structure analysis methods


This section on column selection strategy for primary structure analysis provides some critical details on method development for mAb, proteins, and peptides.



SPP = superficially porous particle, TPP = totally porous particle

Start at low pH with simple aqueous/organic gradient

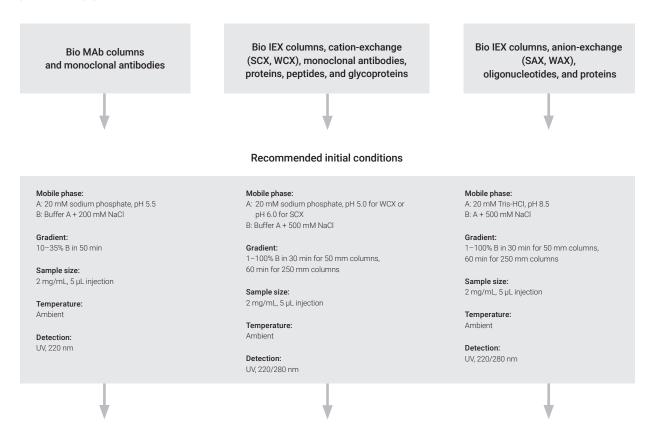
Typically, a water:acetonitrile with 0.1% trifluoroacetic acid (TFA) gradient is used to elute all components of interest. A typical high resolution gradient on a 300 Å pore size column requires 30 to 50 min. An AdvanceBio RP-mAb column requires a shorter analysis time and a higher flow rate, and still provides exceptional resolution. To improve resolution, increase the gradient time, decrease column length, or increase flow rate. For LC/MS methods, TFA can reduce detector sensitivity and is often replaced with ammonium formate/formic acid.

Reversed-phase LC/MS methods

LC/MS of proteins and peptides is used to provide information for protein characterization, to accurately identify post-translational modifications of proteins, and to determine the molecular weight of synthetic and natural peptides. LC/MS is also used to provide protein identification in 2D separations for proteomics applications. Therefore, LC/MS of proteins and peptides is a critical separation area, which requires some special column and mobile phase recommendations. Smaller column sizes are often used for LC/MS and TFA is generally not used in mobile phase because of reduced sensitivity in the MS with this mobile phase additive.

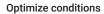
Analytical LC/MS applications

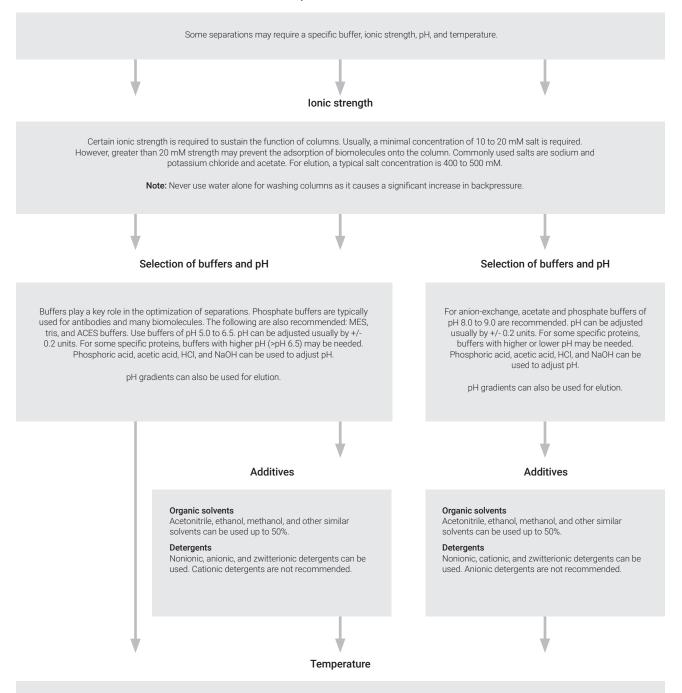
2.1 mm id columns provide good sensitivity when sample size is not limited. With Poroshell columns, smaller 1 mm column ids may be used.


High sensitivity/proteomics applications

Capillary columns are used for high sensitivity protein and peptide applications. The 0.5 mm id columns are used for protein and protein digest separations, while the 0.3 mm id columns are most often used for protein digests. These can be analyzed at high pH with an ammonium hydroxide mobile phase. Nano columns (0.1 and 0.075 mm id) are often used in 2D LC/MS systems for proteomics and the initial choice is C18 bonded phase.

Charge variant analysis methods


This section on column selection strategy for charge variant analysis provides some critical details on method development for mAb, proteins, and peptides.



Select flow rate based on column diameter and particle size

Particle size, µm	Flow rate, mL/min	Particle size, µm	Flow rate, mL/min
5	0.1-0.5	1.7	0.1-0.3
1.7	0.1-0.8	3	0.1-0.5
		3.5	0.1-0.8
		10	0.1-1.0

t

Agilent Bio MAb and IEX columns are stable up to 80 °C. However, many proteins and biomolecules are heat labile. Be sure to establish the temperature stability of your sample before routinely using high temperature for separation.

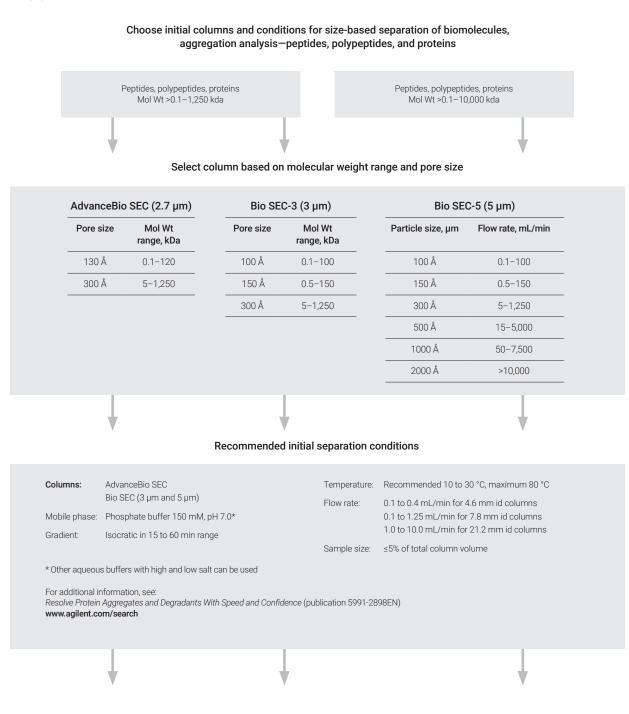
Charge variant analysis methods with Agilent Buffer Advisor software

Agilent Buffer Advisor is a software tool that enables more reproducible and precise ion exchange methods. For example, the software can generate methods using quaternary mixing for a salt gradient with constant pH, or for a pH gradient with a salt gradient for cleanup. These methods can be directly imported into Agilent LC acquisition software.

Recommended initial conditions

(se	Salt gradient e application note: 5991-0656EN)	pH gradient (see application note: 5990-9629EN)			
Columns:	Bio WCX, 4.6 x 250 mm, 10 μm	Column:	Bio MAb, 4.6 x 250 mm, 5 µm		
Nobile phase:	Bio WCX, 4.6 x 250 mm, 5 μm A: water B: 1.6 M NaCl C. 40.0 mM NaH ₂ PO ₄ D. 40.0 mM Na,HPO,	Mobile phase:	A: water B: 1.6 M naCl C. 40.0 mM NaH ₂ PO ₄ D. 40.0 mM Na ₂ HPO ₄		
	By combining predetermined proportions of C and D, 20 mM buffer solutions at the desired		By combining predetermined proportions of C and D, buffer solutions at the desired pH range are produced at the selected buffer strengths.		
Gradient: 0 to for 50%	pH range are produced. 0 to 50% B, 0 to 20 min (constant pH, for example, pH 6.0)	Gradient:	pH 6.0 to 8.0, 0 to 20 min 0 to 800 mM NaCl, 20 to 25 min 800 mM NaCl, 25 to 30 min		
	50% B, 20 to 25 min 0% B, 25 to 35 min	Temperature:	Ambient		
Temperature:	Ambient	Injection volume:	10 µL		
njection volume:	10 µL	Detection:	UV, 220 nm		
Detection:	UV, 220 nm	Instrument:	1260 Infinity II bio-inert LC		
nstrument:	1260 Infinity bio-inert LC	Sample:	IgG monoclonal antibody		
Sample:	Ovalbumin, ribonuclease A, cytochrome c, lysozyme	Sample conc:	2 mg/mL (in 20 mM sodium phosphate buffer, pH 6.0)		
Sample conc:	2 mg/mL (in 20 mM sodium phosphate buffer, pH 6.0)				

Note: Similarly, the above approaches can be applied for Agilent WAX and SCX columns with modifications. To access the Critical Quality Attributes Application Compendium, visit: www.agilent.com/chem/cqa-applications


Select flow rate based on column diameter and particle size

2.1 mm	id columns	4.6 mm id columns			
Particle size, µm	Flow rate, mL/min	Particle size, µm	Flow rate, mL/min		
1.7	0.1-0.3	1.7	0.1-0.3		
3	0.1-0.5	3	0.1-0.5		
5	0.1-0.8	5	0.1-0.8		
10	0.1-1.0	10	0.1-1.0		

Note: Always start with a low flow rate and default to the recommended operating limit of the column.

Aggregation and fragment analysis methods

This section on column selection strategy for aggregation analysis provides some critical details on method development for mAb, proteins, and peptides.

After the initial chromatogram, additional changes may be needed to improve the separation, maintain protein solubility, or to decrease sample interaction with the chromatographic media. The ionic strength of the mobile phase can be adjusted up or down to attain an optimized separation. pH can also be adjusted usually +/- 0.2 units. If further optimization is necessary, the upward or downward range should be expanded. A change of temperature or addition of an organic solvent can also be used.

For protocols requiring additional salt, these buffers are typical:

100 to 150 mM sodium chloride in 50 mM sodium phosphate, pH 7.0 100 to 150 mM sodium sulfate in 50 mM sodium phosphate, pH 7.0 50 to 100 mM urea in 50 mM sodium phosphate, pH 7.0 Other similar salts (for example, KCI) and guanidine hydrochloride can also be used.

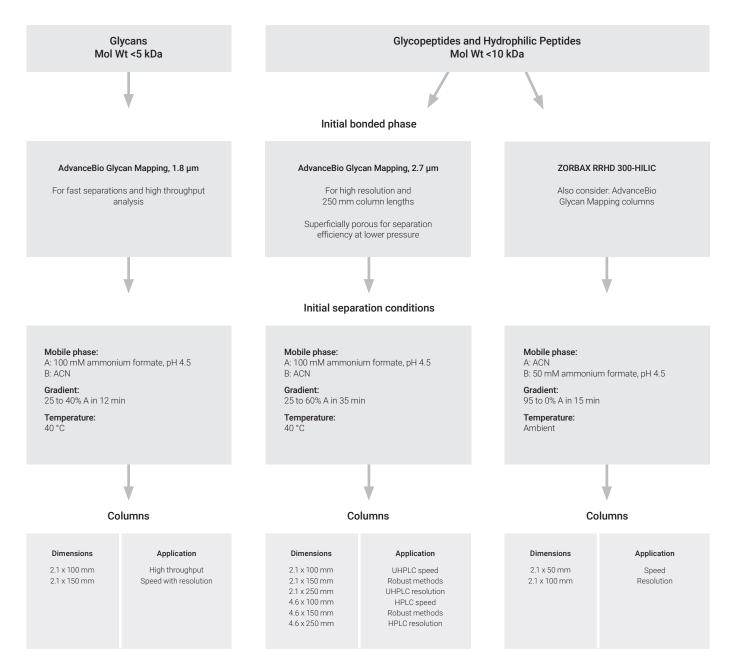
pH range:

2.0 to 8.5

Potential organic solvent additions include:

5 to 10% ethanol (or other similar solvents) in 50 mM sodium phosphate, pH 7.0

5% DMSO in 50 mM sodium phosphate, pH 7.0


Particular care must be taken to avoid excessive pressure changes due to the high viscosity of some aqueous/organic solvent mixtures. Use reduced flow rate or increased temperature to help alleviate potential problems.

Temperature:

Typically, SEC separations are run at 20 to 30 °C. Separation of proteins and peptides may require higher temperatures to improve both resolution and recovery of proteins and hydrophobic peptides.

Maximum temperature of Bio SEC columns is 80 °C.

Glycan and hydrophilic/glycopeptide analysis

Titer determination and cell culture optimization methods

Agilent Bio-Monolith Protein A recommended conditions

Columns:	Bio-Monolith Protein A (p/n 5069-3639)						
Mobile phase:	A: 50 mM phosphate, pH 7.4; B: 100 mM citric acid, pH 2.8 mM, or 500 mM acetic acid, pH 2.6						
Gradient:	Time (mins)	%A	%B				
	0 to 0.5	100	0	Binding			
	0.6 to 1.7	0	100	Eluting			
	1.8 to 3.5	100	0	Re-equilibrating			
Temperature:	Ambient						
Flow rate:	1 mL/min						
Injection volume:	Variable (50 $\mu\text{L},$ optimized for CHO cell culture supernatant contains IgG1)						
Detection:	UV, 280 nm						
Sample:	IgG1 (1 to 20 mg/mL) and CHO cell supernatant contains IgG1 (up to 20 mg/mL total protein)						

Note: Additional salts such as sodium chloride can be added to mobile phases, up 150 mM. Higher salts should be determined experimentally.

Tips and tools

Agilent recognizes that there are many different factors that affect the quality of mAb and protein separations. To enable you to gain the best results, we have developed a series of 'how to' guides. For more information, see:

Keys for Enabling Optimum Peptide Characterizations: A Peptide Mapping "How to" Guide (publication 5991-2348EN)

Ion-exchange Chromatography for Biomolecule Analysis: A "How to" Guide (publication 5991-3775EN)

Size Exclusion Chromatography for Biomolecule Analysis: A "How to" Guide (publication 5991-3651EN)

For more on the above, and other guides that will help in your characterization, go to: www.agilent.com/chem/getbioguides

High sensitivity capillary column methods

Mobile phase considerations for reversed-phase methods

For LC/MS methods where the column eluent passes directly from the column to the MS detector the mobile phases must contain only volatile salts, and additives. And for maximum sensitivity there must be no ion suppression or adduct formation.

Low pH

TFA is generally not used for LC/MS separations of proteins and peptides as it suppresses ionization and increases the limit of detection. The first step is normally to replace TFA with 0.1 to 1% formic acid. Acetic acid up to 1% can also be used as an alternative mobile phase modifier. At low pH, the best separation may still be obtained with TFA in the mobile phase but with a reduction in sensitivity. In some cases, the TFA can be displaced postcolumn with an alternative acid, such as propionic acid by the use of a simple online desalting/counter ion-exchange.

Mid and high pH

I

High pH is less often used for protein characterization but LC/MS can also be done at high pH with 10 to 20 mM NH_4OH as a mobile phase additive.

Agilent Instruments for Protein Identification and Impurity Profiling

1260 Infinity II bio-inert LC

True bio-inertness for efficient biomolecule analysis

The only UHPLC that provides a metal-free sample flow path. Other advantages include:

100% bio-inertness

- No stainless steel: for utmost sample integrity
- pH 1 to pH 13 (pH 14 short-term) for highest instrument uptime
- Handles 2 M salt and 8 M urea
- Easy-to-use capillary technology

UHPLC capability

- 600 bar

Robust and easy to use

- Low surface activity, corrosion resistance, active seal wash, and quaternary buffer mixing

Ideal for protein identification

For best results, use with AdvanceBio Peptide Mapping, Bio MAb, and AdvanceBio SEC columns.

1260 Infinity II bio-inert LC

1290 Infinity II LC with high speed pump

Unmatched performance for ultimate confidence in your results

Best-in-class resolution per time, dispersion, sensitivity, accuracy, and precision in LC/UV and LC/MS. Combines innovative active damping, microfluidic mixing, and optofluidic waveguides detection technology to achieve:

- UHPLC power range with up to 1300 bar and 5 mL/min
- The fastest and easiest method transfer using ISET, Agilent's unique Intelligent System Emulation Technology
- UHPLC productivity with HPLC ownership costs

Use for impurity profiling, peptide mapping or ultra-fast gradients

For best results, use with ZORBAX RRHD 300 Å, 1.8 µm column.

1290 Infinity II LC with high speed pump

Achieve optimal performance and efficiency using Agilent LC supplies

Agilent InfinityLab supplies work seamlessly with InfinityLab LC series instruments to achieve the highest performance, operational efficiency, and lab safety. Smart consumables track usage for added confidence in your analysis.

Visit: www.agilent.com/chem/infinitylab or discover the InfinityLab LC Supplies catalog at www.agilent.com/chem/catalog

Agilent Instruments for Protein Identification and Impurity Profiling

1260 Infinity II LC with binary pump

Raising the standard in analytical HPLC with 600 bar

100% HPLC compatibility plus UHPLC capability

- UHPLC performance with HPLC ownership costs
- Supports LC and LC/MS applications, with any narrow and standard bore analytical column (2.1 to 4.6 mm id)
- Superior gradient accuracy by high-pressure mixing

Use for any standard UHPLC application

1260 Infinity II LC with binary pump

1260 Infinity II Prime LC

Highest confidence and accuracy in your everyday analysis

Highest quaternary UHPLC performance facilitating seamless method transfer and automated buffer blending

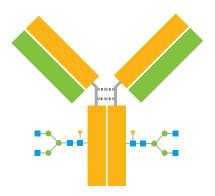
- UHPLC power range with up to 800 bar and 5 mL/min
- BlendAssist, the easiest tool for accurate buffer and additive blending
- UHPLC productivity with HPLC ownership costs

Use for method development or walk-up systems with accurate buffer blending

1260 Infinity II Prime LC

Tips and tools

For a closer look at these advanced systems, visit: www.agilent.com/chem/BioHPLC


Primary Structure Analysis

Accurately determine amino acid sequence and post-translational modifications, and analyze impurities of peptides and oligonucleotides

For full characterization of a protein, such as a monoclonal antibody, it is necessary to look at the primary amino acid sequence and any post-translational modifications to the sequence that may have occurred during the purification or formulation steps of manufacture. To perform this type of analysis, denaturing conditions are required, so reversed-phase LC is normally the technique of choice.

Agilent offers the most comprehensive range of wide-pore, 300 Å, 450 Å, and larger, reversed-phase BioHPLC columns, all backed by technical support experts and application chemists around the globe. The family includes 1.8, 3.5, and 5 µm porous particles for pressures from 400 to 1200 bar, three different superficially porous particles for UHPLC separations at lower pressure, and polymeric columns for analysis under a wide variety of conditions, including formic acid mobile phases for MS analysis.

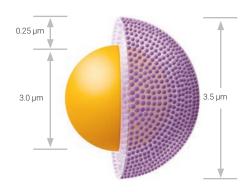
For impurity analysis of either peptides or oligonucleotides, Agilent offers both silica-based and polymeric column options with high pH tolerance. Polymeric column options have the added benefit of being scalable from analytical to preparative separations.

- AdvanceBio RP-mAb columns are the only reversed-phase columns designed especially for mAb characterizations. 450 Å pore size Poroshell technology and the right bonded phase selectivity provide fast, high resolution characterization of intact mAbs and mAb fragments.
- PLRP-S columns include macroporous polymer particles that deliver HPLC separations over the widest pH range. With three wide-pore sizes and eight particle sizes, the PLRP-S columns provide optimum solutions for analytical prep separations of peptides, proteins, and protein complexes.
- ZORBAX RRHD 300 Å 1.8 μm columns deliver UHPLC performance for reversed-phase separations of intact proteins, protein fragments, and digests with 1200 bar stability.
- ZORBAX 300 Å 3.5, and 5 μm columns are made from fully porous materials for HPLC and prep separations; many of the bonded phases scalable from the 1.8 μm particle.
- Poroshell 300 columns are the industry's first superficially porous small particle columns for fast polypeptide and protein separations.
- AdvanceBio Peptide Mapping columns quickly resolve and identify amino acid modifications in primary structure. With their 2.7 µm particles, and C18 functionality, AdvanceBio Peptide Mapping columns deliver excellent retention, resolution, and peak shape for basic hydrophobic peptides.
- AdvanceBio Oligonucleotide columns feature high efficiency, 2.7 µm superficially porous particles for high resolution analysis of oligonucleotides and their impurities. Using exclusive technology, the particles are chemically modified to make them resistant to the high pH mobile phase conditions necessary for oligonucleotide separations.

Reversed-phase column selection

Application	Agilent Columns	Notes	
Monoclonal antibodies and mAb fragments	AdvanceBio RP-mAb C4 SB-C8 Dipheny	 Based on Poroshell technology featuring superficially porous particles that reduce diffusion distances and allow higher flow rates and steeper gradients to be used thus reducing run times—even on 600 bar systems. 450 Å pore size provides full access to the bonded phase by large molecules ensuring the best possible chromatography. Robust bonded phases designed for monoclonal antibody separations provide a range of selectivities that allow resolution to be optimized. 	
	PLRP-S 1000 Å	Macroporous polymeric PLRP-S delivers excellent mAb separations, especially with formic acid mobile phases for MS detection.	
Intact proteins, monoclonal antibodies,	ZORBAX 300 Å, 1.8 μm	Optimized packing processes achieve stability up to 1200 bar for use with the 1290	
mAb fragments and polypeptides	RRHD 300SB-C18 RRHD 300SB-C8 RRHD 300SB-C3 RRHD 300-Diphenyl	 Infinity II LC. RRHD 1.8 µm columns are available in 50 and 100 mm lengths for fast or high resolution separations of the most complex samples. StableBond C18 is ideal for complex protein and protein digest separations. 	
	ZORBAX 300 Å, 3.5, and 5 µm	Ideal for use with HPLC systems. StableBond C3 and CN are useful for larger, more hydrophobic compounds.	
	300SB-C18 300SB-C8 300SB-C3 300SB-CN		
	PLRP-S	Polymeric PLRP-S offers alternate selectivity to silica-based columns, along with excellent peak shape in formic acid mobile phases.	
	100 Å 300 Å 1000 Å 4000 Å	-	
	Poroshell 300	5 μm Poroshell particles with 300 Å pores enable rapid HPLC separations of intact proteins.	
	300SB-C18 300SB-C8 300SB-C3 300Extend-C18	or intact proteins.	
Proteins in protein digests	AdvanceBio Peptide Mapping	An ideal 120 Å pore size for identifying a wide molecular weight range of peptides. Tested with a challenging peptide mix to ensure performance. The unique Agilent Poroshell technology enables shorter run times and better resolution of the full peptide sequence.	
Synthetic peptide impurity analysis	PLRP-S 100 Å, 300 Å	Scalable from analytical to preparative separations. Superior pH stability enables extreme pH use, including for sanitization.	
Oligonucleotide analysis	PLRP-S 100 Å, 300 Å, 1000 Å, 4000 Å PL-SAX 1000 Å, 4000 Å	Multiple pore size options depending on oligonucleotide length. High temperature stability. Scalable from analytical to preparative separations. For more information on PL-SAX, please see Page 95 .	
	AdvanceBio Oligonucleotide	Ideal for high-resolution analytical scale separations.	

AB Part of the AdvanceBio family


AdvanceBio RP-mAb

- Improved accuracy: superficially porous particles (3.5 μm) with wide pores (450 Å) increase mAb resolution while maintaining compatibility with all LC instruments.
- Speed: shorter analysis times compared to columns packed with fully porous particles.
- Flexible method development: range of chemistries-SB-C8, C4, and diphenyl.
- Lower costs: robust Poroshell packed bed and 2 µm inlet frit extend column lifetime by helping prevent inlet blockage.

Reversed-phase columns developed for the unique challenges of monoclonal antibody characterization

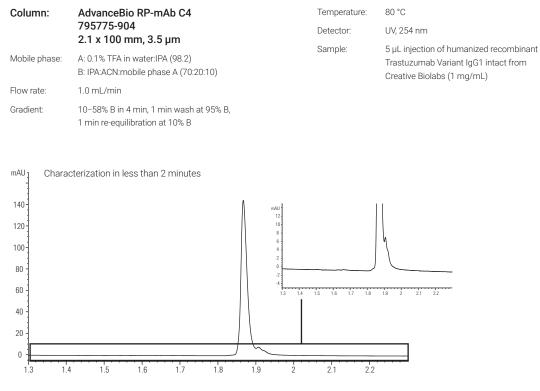
Analysis of intact and reduced monoclonal antibodies are critical measurements for characterizing therapeutic proteins and understanding their efficacy and stability. Poor chromatographic separations can result in rework and even compromise the accuracy of the characterization.

Long analysis times negatively impact the throughput of a laboratory and lead to delays in making decisions based on the results of characterization. To eliminate these problems, Agilent has developed a new reversed-phase column to optimize the performance of intact and reduced mAb analysis. The AdvanceBio RP-mAb column is based on Poroshell technology with unique engineering for pore size and bonded phases.

Tips and tools

For more information on the characterization of monoclonal antibody primary structure, see: Better Characterization of Biomolecules using Agilent AdvanceBio Reversed-Phase Columns (publication **5991-2032EN**)

www.agilent.com/search


Large biomolecules, such as monoclonal antibodies, are typically separated slowly to reduce the potential peak broadening of these slow diffusing analytes. However, the Poroshell technology used in AdvanceBio RP-mAb columns features superficially porous particles made with a thin layer of porous silica, 0.25 µm thick, on a 3.0 µm solid silica core. This morphology reduces the diffusion distance, allowing higher flow rates and steeper gradients to be used—even on 600 bar systems. The wide 450 Å diameter of the pores in the thin layer provides full access to the bonded phase by the large monoclonal antibody molecules ensuring the best possible chromatography. A choice of robust bonded phases designed for monoclonal antibody separations, C4, SB-C8, and a unique diphenyl, provide a range of selectivities that allow resolution to be optimized.

AdvanceBio RP-mAb columns deliver higher resolution and shorter run times to provide fast, accurate, and reproducible results when analyzing monoclonal antibodies for biopharma discovery, development, and QA/QC applications.

Column Specifications				
Bonded Phase	Pore Size	Temperature Limits*	pH Range*	Endcapped
AdvanceBio RP-mAb C4	450 Å	90 °C	1.0-8.0	Yes
AdvanceBio RP-mAb SB-C8	450 Å	90 °C	1.0-8.0	No
AdvanceBio RP-mAb Diphenyl	450 Å	90 °C	1.0-8.0	Yes

Specifications represent typical values only.

* Columns are designed for optimal use at low pH. At pH 6–8, highest column stability for all silica-based columns is obtained by operating at temperatures <40 °C and using low buffer concentrations in the range of 0.01–0.02 m.</p>

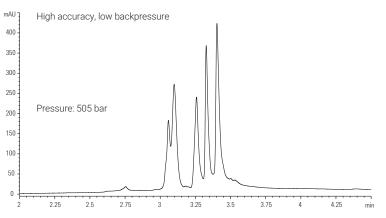
High speed, high resolution separation of Trastuzumab Variant IgG1

AdvanceBio RP-mAb C4 provides a sharp peak and resolves fine detail in less than 2 minutes.

Separation of intact humanized recombinant Trastuzumab IgG1

Column:	AdvanceBio RP-mAb C4 795775-904 2.1 x 100 mm, 3.5 μm	mAU 1 10	Superior to	o other pr	otein colu	mns			AdvanceBio RP-mAb C4			
Mobile phase:	A: 0.1% TFA in water:IPA (98:2) B: IPA:ACN:mobile phase A (70:20:10)	5 0 -5 1.3	1.4	15	1.6	1.7	1.8	19	2	21	22	min
Flow rate:	1.0 mL/min	mAU 10						\			turer's colu	mn
Gradient:	10–58% B in 4 min, 1 min wash at 95% B, 1 min re-equilibration at 10% B	5 0 -5 -13	14	15	1.6		 			400 Å, 3.4 µ	JM 	
Temperature:	80 °C	mAU 10									turer's colu	mn
Detector:	UV, 254 nm	5-							C4, 2	200 Å, 3.6 µ	Jm	
Sample:	5 μL injection of humanized recombinant Trastuzumab Variant IgG1 intact from Creative Biolabs (1 mg/mL)	-5 -1.3 mAU 10 -1 -1.3	1.4	15	1.6	1.7	18			21 er manufac 300 Å, 2.6 μ	22 eturer's colu	 min
		5 13 Sp	Decifically de	signed fo	r mAb sep	Darations,	Advance	Bio RP-mA	provide	es superio	or peak	min

shape and resolution when compared to other columns used for intact protein separations.

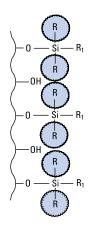

Selective diphenyl phase

Column:	AdvanceBio RP-mAb Diphenyl 795775-944 2.1 x 100 mm, 3.5 μm	mAU]	More fine details resolved
Mobile phase:	A: 0.1% TFA in water: IPA (98:2) B: IPA:ACN:mobile phase A (70:20:10)	12- 10-	
Flow rate:	1.0 mL/min	8-	
Gradient:	10–58% B in 4 min, 1 min wash at 95% B, 1 min re-equilibration at 10% B	6-	
Temperature:	80 °C	4	
Detector:	UV, 254 nm	2	
Sample:	5 µL injection of humanized recombinant Trastuzumab Variant IgG1 intact from Creative Biolabs (1 mg/mL)	-2 -4	1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 min

The unique selectivity of AdvanceBio RP-mAb Diphenyl resolves even more fine detail.

The Poroshell advantage

Column:	AdvanceBio RP-mAb SB-C8 785775-906 2.1 x 100 mm, 3.5 µm
Mobile phase:	A: 0.1% TFA in water B: n-Propanol:ACN:mobile phase A (80:10:10)
Flow rate:	0.8 mL/min
Gradient:	5-40% B in 5 min, 1 min wash at 95% B, 1 min re-equilibration at 10% B
Temperature:	60 °C
Detector:	UV, 220 nm
Sample:	1 µL injection of Fc/Fab, papain-digested humanized recobinant Trastuzumab Variant IgG1 from Creative Biolabs (2 mg/mL)


The wide-pore Poroshell technology of the AdvanceBio RP-mAb column delivers high efficiency, a short analysis time, and low pressure, at temperatures below 80 °C—the typical temperature of many reversed-phase methods.

AdvanceBio RP-mAb

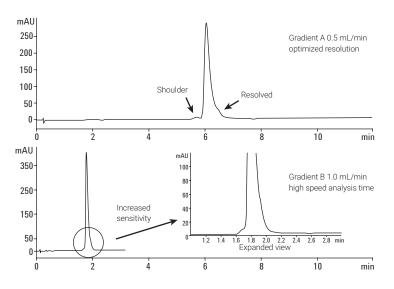
Size (mm)	Particle Size (µm)	AdvanceBio RP-mAb C4 USP L26	AdvanceBio RP-mAb SB-C8 USP L7	AdvanceBio RP-mAb Diphenyl USP L11
4.6 x 150	3.5	793975-904	783975-906	793975-944
4.6 x 100	3.5	793975-904	783975-906	793975-944
4.6 x 50	3.5	793975-904	783975-906	793975-944
2.1 x 150	3.5	793975-904	783975-906	793975-944
2.1 x 100	3.5	793975-904	783975-906	793975-944
2.1 x 75	3.5	793975-904	783975-906	793975-944
2.1 x 50	3.5	793975-904	783975-906	793975-944

ZORBAX 300 Å StableBond

Agilent ZORBAX 300 Å StableBond columns are an ideal choice for the reproducible separations of proteins and peptides for two key reasons. First, wide-pore, 300 Å columns are necessary for an efficient separation of proteins and peptides, or other large molecules, to allow these analytes to completely access the bonded phase. Second, 300StableBond columns are unmatched in their durability at low pH, such as with TFA-containing mobile phases typically used for protein and peptide separations. For LC/MS separations at low pH, 300StableBond columns can also be used with formic acid and acetic acid mobile phase modifiers. These columns are available in five different bonded phases (C18, C8, C3, CN, and diphenyl (DP)) for selectivity and recovery optimization of proteins and polypeptides. To further increase sample recovery and improve efficiency for difficult proteins, 300StableBond columns can be used up to 80 °C. StableBond 300SB-C18 and 300SB-C8 columns are an ideal choice for complex protein and protein digest separations. These columns are also available in capillary (0.3 and 0.5 mm id) and nano (0.075 and 0.10 mm id) dimensions for reversed-phase LC/MS separations of protein digests. Capillary and nano columns can be used for either 1D or 2D proteomics separations.

Sterically Protected 300StableBond bonded phase

UHPLC Column Specifications

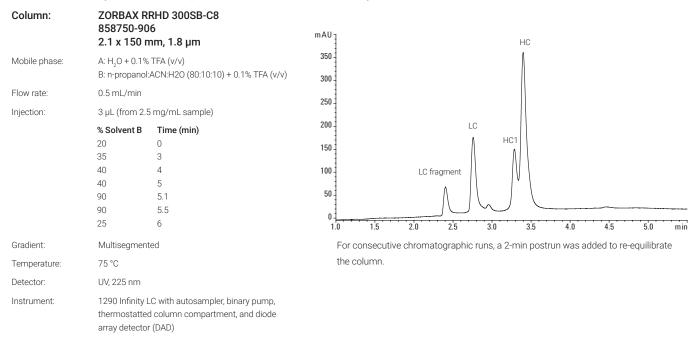

Bonded Phase	Pore Size	Temp Limits*	pH Range*	Endcapped
ZORBAX RRHD 300SB-C18	300 Å	90 °C	1.0-8.0	No
ZORBAX RRHD 300SB-C8	300 Å	80 °C	1.0-8.0	No
ZORBAX RRHD 300SB-C3	300 Å	80 °C	1.0-8.0	No
ZORBAX RRHD 300-Diphenyl	300 Å	80 °C	1.0-8.0	Yes
ZORBAX 300SB-C18	300 Å	80 °C	1.0-8.0	No
ZORBAX 300SB-C8	300 Å	80 °C	1.0-8.0	No
ZORBAX 300SB-C3	300 Å	80 °C	1.0-8.0	No
ZORBAX 300SB-CN	300 Å	80 °C	1.0-8.0	No

Specifications represent typical values only.

* 300StableBond columns are designed for optimal use at low pH. At pH 6–8, the highest column stability for all silica-based columns is obtained by operating at temperatures <40 °C and using low buffer concentrations in the range of 0.01–0.02 M. At mid or high pH, 300Extend-C18 is recommended.

Higher resolution of intact monoclonal antibody

Column:	ZORBAX RRHD 300SB-C8 857750-906 2.1 x 50 mm, 1.8 µm
Mobile phase:	A: H ₂ O:IPA (98:2) + 0.1% TFA (v/v) B: IPA:ACN:H ₂ O (70:20:10) + 0.1% TFA (v/v)
Flow rate:	Between 0.5 mL/min and 1.0 mL/min
Gradient:	Multisegmented and linear elution
Temperature:	80 °C
Detector:	1290 Infinity LC with autosampler, binary pump and thermostatted column compartment, and diode array detector (DAD)
Sample:	UV, 225 nm


Tips and tools

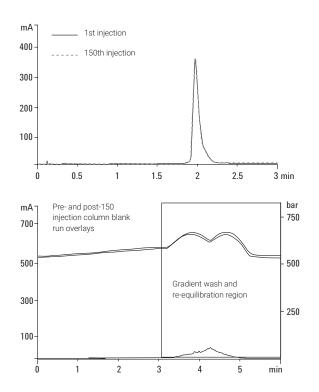
For more information on better characterization of biomolecules using AdvanceBio Reversed-Phase columns, see the white paper on this topic (publication **5991-2032EN**).

www.agilent.com/search

Reduced and alkylated mAb-separation of light chain and heavy chain variants

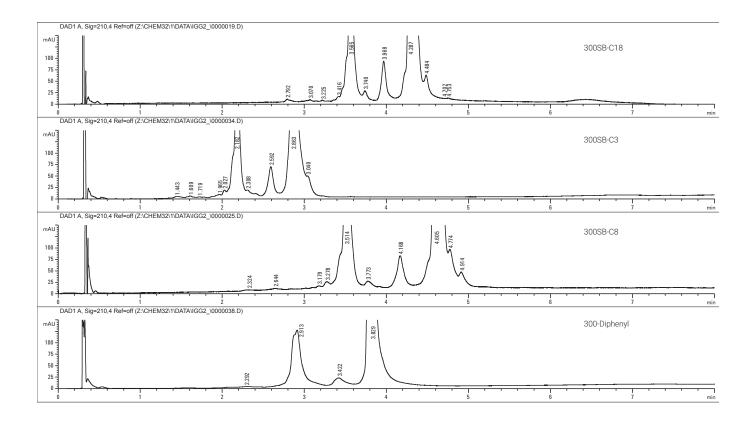
Tips and tools

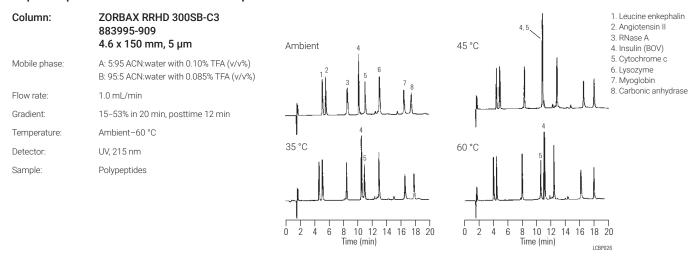
Typical mobile phases for protein and peptide separations combine a very low pH with TFA (or other acids) to solubilize proteins. StableBond columns have extremely long lifetimes under these conditions. They are available in 300 Å pore size for proteins up to 100–500 kDa.


Improved reproducibility of monoclonal antibodies

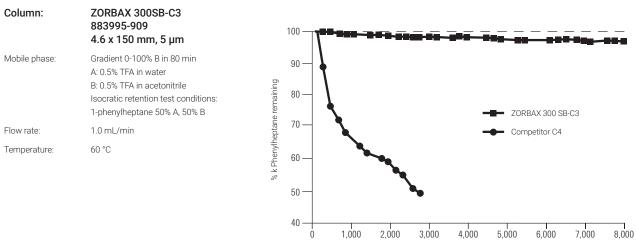
Column:	ZORBAX RRHD 300SB-C8 857750-906 2.1 x 50 mm, 1.8 μm
Mobile phase:	A: H ₂ O:IPA (98:2) + 0.1% TFA (v/v) B: IPA:ACN:H ₂ O (70:20:10) + 0.1% TFA
Flow rate:	1.0 mL/min
Temperature:	2° 08
Detector:	1290 Infinity LC with diode array detector at 225 nm
Sample:	mAb

Gradient

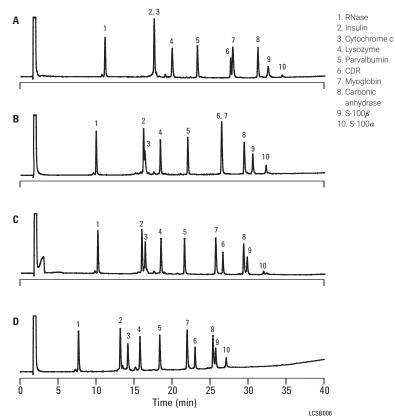

Particle size, µm	Flow rate, mL/min
0.00	25
3.00	35
4.00	90
5.00	25


Excellent column reproducibility and protein recovery using ZORBAX 300SB-C8.

Unique selectivity choices for mAb characterization


	ZORBAX RRHD 300SB-C18 858750-902	Mobile phase:	A: H ₂ O (0.1% TFA) (v/v) B: 80% nPA:10% ACN:10% H ₂ O (0.08% TFA) (v/v)
	2.1 x 100 mm, 1.8 μm	Injection volume:	3 μL (from 2.5 mg/mL sample)
ZORBAX RRHD 300SB-C3 858750-909 2.1 x 100 mm, 1.8 μm ZORBAX RRHD 300SB-C8 858750-906 2.1 x 100 mm, 1.8 μm ZORBAX RRHD 300-Diphenyl		Flow rate:	1.0 mL/min (3.5 μm*), 1.0 mL/min (1.8 μm)
		Gradient:	25-35% B, 90% wash
	ZORBAX RRHD 300SB-C8	Temperature:	80 °C
		Detector:	UV, 215 nm
	<i>,</i> ,	* Broad peaks at lowe	r flow rates
	858750-944 2.1 x 100 mm, 1.8 μm		

Peptides/proteins: effect of elevated temperature


Short-chain ZORBAX 300SB-C3 is stable at low pH, high temperature

Volume of mobile phase (mL)

Four different 300SB bonded phases optimize separation of large polypeptides

Column A:	ZORBAX RRHD 300SB-C18 883995-902 4.6 x 150 mm, 5 μm
Column B:	ZORBAX 300SB-C8 883995-906 4.6 x 150 mm, 5 μm
Column C:	ZORBAX 300SB-C3 858750-909 4.6 x 150 mm, 5 μm
Column D:	ZORBAX 300SB-CN 858750-905 4.6 x 150 mm, 5 μm
Mobile phase:	Linear gradient, 25–70% B in 40 min A: 0.1% TFA in water B: 0.09% TFA in 80% acetonitrile:20% water
Flow rate:	1.0 mL/min
Temperature:	60 °C
Sample:	3 µg each protein

The 300SB-C18, C8, C3, and CN bonded phases all provide a different separation of this group of polypeptides. This adds an important parameter for quickly optimizing protein separations. The 300SB-CN column offers unique selectivity for more hydrophilic polypeptides.

ZORBAX 300 Å StableBond

Description	Size (mm)	Particle Size (µm)	300SB-C18 USP L1	300SB-C8 USP L7	300SB-CN USP L10	300SB-C3 USP L56	300-Diphenyl USP L11
Standard columns (no sp	pecial hardware re	equired)					
Semipreparative	9.4 x 250	5	880995-202	880995-206	880995-205	880995-209	
Analytical	4.6 x 250	5	880995-902	880995-906	880995-905	880995-909	
Analytical	4.6 x 150	5	883995-902	883995-906	883995-905	883995-909	
Analytical	4.6 x 50	5	860950-902	860950-906	860950-905	860950-909	
Rapid Resolution	4.6 x 150	3.5	863973-902	863973-906	863973-905	863973-909	
Rapid Resolution	4.6 x 100	3.5	861973-902	861973-906			
Rapid Resolution	4.6 x 50	3.5	865973-902	865973-906	865973-905	865973-909	
Solvent Saver Plus	3.0 x 150	3.5	863974-302	863974-306		863974-309	
Solvent Saver Plus	3.0 x 100	3.5		861973-306			
Narrow Bore	2.1 x 250	5	881750-902				
Narrow Bore	2.1 x 150	5	883750-902	883750-906	883750-905	883750-909	
Narrow Bore RR	2.1 x 150	3.5		863750-906			
Narrow Bore RR	2.1 x 100	3.5	861775-902	861775-906			
Narrow Bore RR	2.1 x 50	3.5	865750-902	865750-906			
Narrow Bore RRHD	2.1 x 100	1.8	858750-902	858750-906		858750-909	858750-944
Narrow Bore RRHD	2.1 x 50	1.8	857750-902	857750-906		857750-909	857750-944
MicroBore	1.0 x 250	5	861630-902				
MicroBore RR	1.0 x 150	3.5	863630-902	863630-906			
MicroBore RR	1.0 x 50	3.5	865630-902	865630-906			
MicroBore guard, 3/pk	1.0 x 17	5	5185-5920	5185-5920			
Guard cartridge, 2/pk	9.4 x 15	7	820675-124	820675-124	820675-124	820675-124	
Guard cartridge, 4/pk	4.6 x 12.5	5	820950-921	820950-918	820950-923	820950-924	

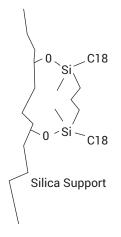
(Continued)

AB

AB Part of the AdvanceBio family

Tips and tools

To get the most out of your Agilent instruments, visit: www.agilent.com/chem/getbioguides % $\label{eq:compared}$


ZORBAX 300 Å StableBond

Description	Size (mm)	Particle Size (µm)	300SB-C18 USP L1	300SB-C8 USP L7	300SB-CN USP L10	300SB-C3 USP L56	300-Diphenyl USP L11
Guard cartridge, 4/pk	2.1 x 12.5	5	821125-918	821125-918	821125-924	821125-924	
Guard hardware kit			840140-901	840140-901	840140-901	840140-901	
Guard hardware kit			820999-901	820999-901	820999-901	820999-901	
PrepHT cartridge columns	(require endfitti	ngs kit 820400-90)1)				
PrepHT cartridge	21.2 x 250	7		897250-102	897250-106	897250-105	897250-109
PrepHT cartridge	21.2 x 150	7		897150-102	897150-106		897150-109
PrepHT cartridge	21.2 x 150	5		895150-902	895150-906		895150-909
PrepHT cartridge	21.2 x 100	5		895100-902	895100-906		895100-909
PrepHT cartridge	21.2 x 50	5		895050-902	895050-906		895050-909
PrepHT endfittings, 2/pk				820400-901	820400-901	820400-901	820400-901
PrepHT guard	17.0 x 7.5	5		820212-921	820212-918	820212-924	820212-924
Guard cartridge hardware				820444-901	820444-901	820444-901	820444-901
Capillary glass-lined colun	nns						
Capillary	0.5 x 250	5	5064-8266				
Capillary	0.5 x 150	5	5064-8264				
Capillary	0.5 x 35	5	5064-8294				
Capillary RR	0.5 x 150	3.5	5064-8268				
Capillary RR	0.5 x 35	3.5	5065-4459				
Capillary	0.3 x 250	5	5064-8265				
Capillary	0.3 x 150	5	5064-8263				
Capillary	0.3 x 35	5	5064-8295				
Capillary RR	0.3 x 150	3.5	5064-8267	5065-4460			
Capillary RR	0.3 x 100	3.5	5064-8259	5065-4461			
Capillary RR	0.3 x 35	3.5	5064-8270	5065-4462			
Capillary RR	0.3 x 50	3.5	5064-8300	5065-4463			
Nano columns (PEEK fuse	d silica)						
Nano RR	0.1 x 150	3.5	5065-9910				
Nano RR	0.075 x 150	3.5	5065-9911				
Nano RR	0.075 x 50	3.5	5065-9924	5065-9923			
Trap/guard, 5/pk	0.3 x 5	5	5065-9913	5065-9914			
Trap/guard hardware kit			5065-9915	5065-9915			

ZORBAX 300 Å Extend-C18

- Rugged, high and low pH separations of polypeptides and peptides from pH 2-11.5
- Different selectivity possible at high and low pH
- High efficiency and good recovery of hydrophobic peptides at high pH
- Ideal for LC/MS with ammonium-hydroxide-modified mobile phase

ZORBAX 300 Å Extend-C18 is a wide-pore HPLC column for high-efficiency separations of peptides from pH 2-11.5. The unique, bidentate bonded phase provides excellent lifetime and reproducibility at high and low pH. At high pH, retention and selectivity of peptides and polypeptides can change dramatically as a result of changes in charge on molecules. Excellent recoveries of hydrophobic polypeptides have been achieved at room temperature and high pH. LC/MS sensitivity of peptides and polypeptides can also be improved at high pH using a simple ammonium-hydroxide-containing mobile phase.

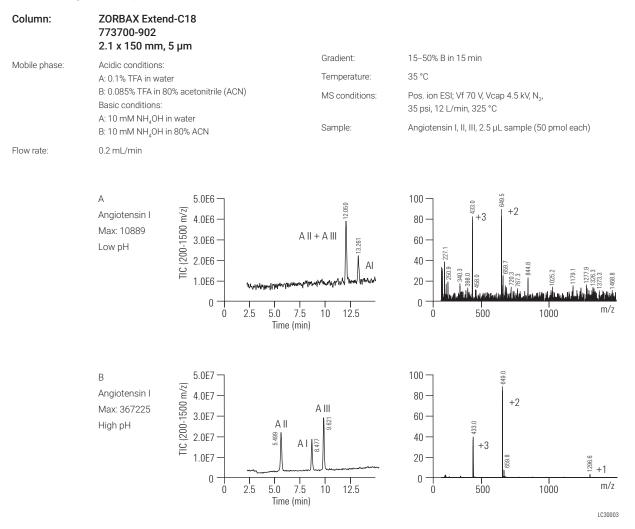
Novel bidentate C18-C18 bonding for Extend-C18 bonded phase

UHPLC Column Specifications

Bonded Phase	Pore Size	Temp Limits*	pH Range*	Endcapped		
ZORBAX 300 Å Extend-C18 60 °C	300 Å	60 °C	2.0-11.5	Double		

Specifications represent typical values only

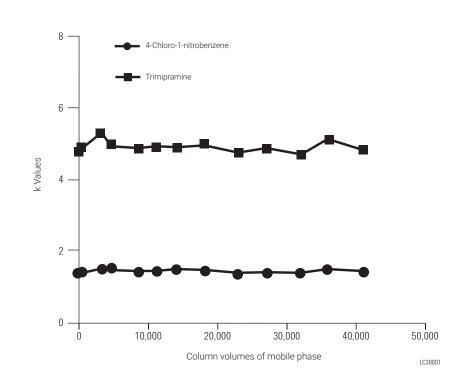
* Temperature limits are 60 °C up to pH 8, 40 °C from pH 8-11.5.


Tips and tools

Selecting the right column is only part of the total solution. Don't forget key supplies such as our wide range of LC lamps. Visit: **www.agilent.com/chem/lamps** for more.

Primary Structure Analysis

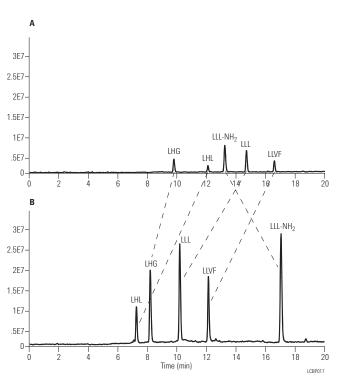
LC/MS analysis of angiotensin



Both small and large peptides demonstrate selectivity changes at high and low pH. At high pH, due to a change in charge, all three angiotensins can be resolved. In addition, the spectral clarity of angiotensin I is dramatically improved at high pH with the ammonium hydroxide mobile phase. The Extend-C18 column can be used for the analysis of small peptides at high pH as well.

Reference: B.E. Boyes. Separation and Analysis of Peptides at High pH Using RP-HPLC/ESI-MS, 4th WCBP, San Francisco, CA, Jan. 2000.

Long life at high pH


Column:	ZORBAX Extend-C18 773450-902 4.6 x 150 mm, 5 μm
Mobile phase:	20% 20 mM NH ₄ OH, pH 10.5 80% methanol
Flow rate:	1.5 mL/min
Temperature:	Aging 24 °C Tests 40 °C
Each 10,000 column v one working month.	olume is approximately

Use ZORBAX Extend-C18 for alternate selectivity at high pH

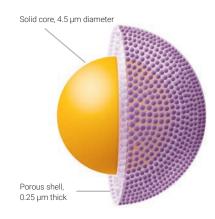
Column:	ZORBAX Extend-C18 773700-902 2.1 x 150 mm, 5 μm
Mobile phase:	A: 0.1% TFA in water B: 0.085% TFA in 80% ACN
	A: 20 mM NH ₄ OH in water B: 20 mM NH ₄ OH in 80% ACN
Flow rate:	0.25 mL/min
Gradient:	5-60% B in 20 min
Temperature:	25 °C
MS conditions:	Pos. ion ESI; Vf 70 V, Vcap 4.5 kV, N ₂ , 35 psi, 12 L/min, 300 °C 4 µL (50 ng each peptide)

The Extend column can be used for high pH separations of peptides. At high and low pH, very different selectivity can occur. Just by changing pH, a complementary method can be developed and it is possible to determine if all peaks are resolved. The Extend column can be used at high and low pH, and so the complementary separation can be investigated with one column. Better MS sensitivity for this sample is also achieved at high pH.

ZORBAX 300 Å Extend-C18

Description	Size (mm)	Particle Size (µm)	Part No.
Analytical	4.6 x 250	5	770995-902
Analytical	4.6 x 150	5	773995-902
Rapid Resolution	4.6 x 150	3.5	763973-902
Rapid Resolution	4.6 x 100	3.5	761973-902
Rapid Resolution	4.6 x 50	3.5	765973-902
Narrow Bore RR	2.1 x 150	3.5	763750-902
Narrow Bore RR	2.1 x 100	3.5	761775-902
Narrow Bore RR	2.1 x 50	3.5	765750-902
Guard cartridge, 4/pk	4.6 x 12.5	5	820950-932
Guard cartridge, 4/pk	2.1 x 12.5	5	821125-932
Guard hardware kit			820999-901
Capillary glass-lined colum	IS		
Capillary RR	0.3 x 150	3.5	5065-4464
Capillary RR	0.3 x 100	3.5	5065-4465
Capillary RR	0.3 x 75	3.5	5065-4466
Capillary RR 0.3 x 50		3.5	5065-4467

Tips and tools


Guard columns and filters help protect your column and instruments from particulates that can cause blockages, which increase system pressure and negatively impact performance—interrupting your daily workflow. Agilent's new Fast guards for UHPLC and Bio LC columns help protect the column, leading to longer column lifetimes, minimizing interruptions in your workflow. For more information, visit: www.agilent.com/chem/fastguards

Poroshell 300 AB

- High speed separations of biomolecules with superficially porous particles
- 300 Å pores provide high efficiency and recovery with proteins (up to 1,000 kDa)
- Achieve long lifetime at low pH with Poroshell 300SB and at high pH with 300Extend-C18
- Optimize recovery and selectivity with four different bonded phases—300SB-C18, 300SB-C8, 300SB-C3, and 300Extend-C18

Poroshell 300 columns are ideal for fast separations of proteins and peptides because the 5 µm diameter superficially porous particle allows for fast flow rates to be used while maintaining sharp, efficient peaks. Poroshell columns with StableBond bonded phases provide excellent stability and selectivity choices with TFA and formic acid mobile phases. The Poroshell 300Extend-C18 column can be used from pH 2-11 for unique separations. These columns can also be used for analytical protein separations and LC/MS separations.

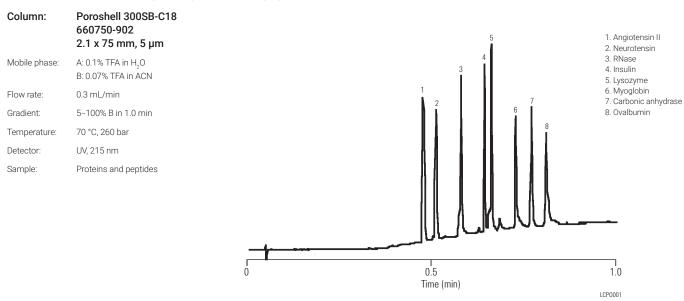
Peptides and proteins are typically separated slowly to reduce the potential peak broadening of these slow diffusing analytes. However, Poroshell columns use a superficially porous particle made with a thin layer of porous silica, 0.25 µm thick, on a solid core of silica. This reduces the diffusion distance for proteins, making rapid HPLC separations of peptides and proteins up to 500-1,000 kDa possible with 400/600 bar HPLC systems, including the 1260 Infinity II bio-inert LC.

UHPLC Column Specifications

Bonded Phase	Pore Size	Temp Limits*	pH Range*	Endcapped
Poroshell 300SB-C18, C8, C 3	300 Å	90 °C	1.0-8.0	No
Poroshell 300Extend-C18	300 Å	40 °C above pH 8 60 °C above pH 8	2.0-11.0	Yes

Specifications represent typical values only

* 300StableBond columns are designed for optimal use at low pH. At pH 6–8, the highest column stability for all silica-based columns is obtained by operating at temperatures < 40 °C and using low buffer concentrations in the range of 0.01–0.02 M. At mid or high pH, 300Extend-C18 is recommended.



Poroshell 300 columns

AB

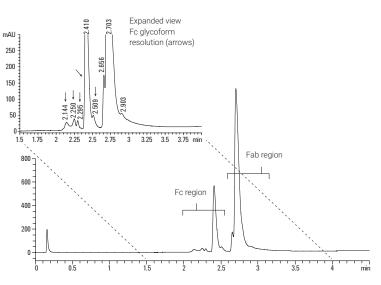
Part of the AdvanceBio family

Poroshell 300 columns separate proteins and peptides in seconds

This separation of eight polypeptides and proteins is completed in less than 60 seconds. Each peak is sharp and efficient.

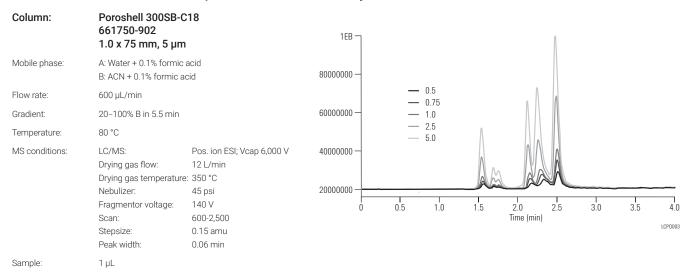
Tips and tools

Further information can be found in:


Characterization of Glycosylation in the Fc Region of Therapeutic Recombinant Monoclonal Antibody (publication 5991-2323EN)

Using the High-pH Stability of ZORBAX Poroshell 300Extend-C18 to Increase Signal-to-Noise in LC/MS (publication 5989-0683EN)

www.agilent.com/search


Rapid high resolution analysis of fragmented IgG

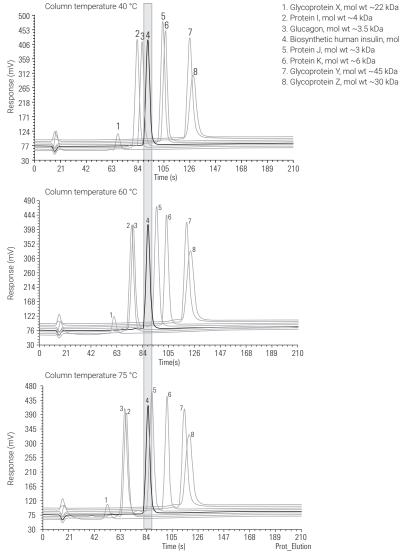
Column:	Poroshell 300SB-C3 660750-909 2.1 x 75 mm, 5 μm					
Mobile phase:		A: Water (5% AcOH, 1.0% FA, 0.05% TFA) B: 70/20/10 IPA:ACN:water (5% AcOH, 1.0% FA, 0.05% TFA)				
Flow rate:	1.0 mL/min					
Injection volume:	2 µL					
Gradient:	Segmented					
	Time (min) 0 4 8 9 10	% B 20 45 45 90 20				
Temperature:	80 °C					
Detector:	UV, 280 nm					
Instrument:	binary pump, t	eries with high performance autosampler, thermostatted column compartment ide array detector (DAD) coupled to a 6224 s TOF LC/MS				

Reversed-phase separation of IgG1 after papain digestion showing two primary peaks of the Fc and Fab fragments. The inset details partially resolved peaks representing variants of the Fc and Fab fragments (arrows).

MicroBore Poroshell 300 columns provide maximum sensitivity for LC/MS

With narrow bore diameters of 2.1 mm, 1.0 mm, and 0.5 mm, Poroshell columns make an ideal LC/MS partner. When the sample is very limited, the 1.0 mm or 0.5 mm id Poroshell columns are an excellent choice for high sensitivity LC/MS analyses. Sensitive MS molecular weight determinations are possible with as little as 0.5 to 5 pmole of protein on Poroshell columns. The columns have also been used for rapid MS identification of intact proteins, even in the presence of stabilizers and tissue culture media.

Tips and tools


Agilent offers an extensive selection of vials and sample containment solutions including polypropylene and deactivated and siliconized glass. To see the full range, see publication **5990-9022EN**.

www.agilent.com/chem/vials-productivity

Protein elution patterns

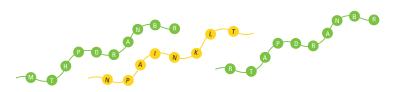
Column:	Poroshell 300SB-C8 660750-906 2.1 x 75 mm, 5 μm
Mobile phase:	A: 0.1% TFA in H_2O B: 0.1% TFA in ACN
Flow rate:	1.0 µL/min
Gradient:	20 to 70% B in 3 min
Detector:	UV, 214 nm

2. Protein I, mol wt ~4 kDa Glucagon, mol wt ~4 kDa Glucagon, mol wt ~3.5 kDa Biosynthetic human insulin, mol wt ~6 kDa Protein J, mol wt ~3 kDa 6. Protein K, mol wt ~6 kDa 7. Glycoprotein Y, mol wt ~45 kDa 8. Glycoprotein Z, mol wt ~30 kDa

Poroshell 300

Description	Size (mm)	Partical Size (µm)	Poroshell 300SB-C18	Poroshell 300SB-C8	Poroshell 300SB-C3	Poroshell 300Extend-C18
Narrow Bore	2.1 x 75	5	660750-902	660750-906	660750-909	670750-902
MicroBore	1.0 x 75	5	661750-902	661750-906	661750-909	671750-902
Capillary	0.5 x 75	5		5065-4468		
Guard cartridge, 4/pk	2.1 x 12.5	5	821075-920	821075-918	821075-924	
Guard hardware kit			820999-901	820999-901	820999-901	
MicroBore guard, 3/pk	1.0 x 17	5	5185-5968	5185-5968	5185-5968	5185-5968

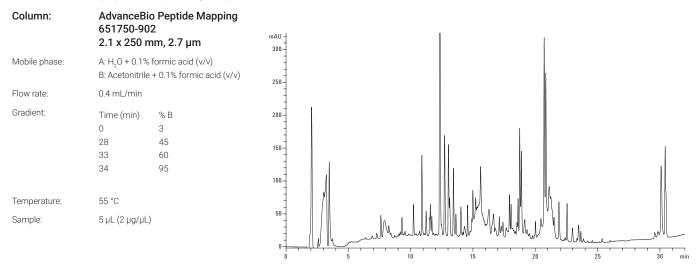
AdvanceBio Peptide Mapping


- Greater analytical confidence: each batch of AdvanceBio Peptide Mapping media is tested with a rigorous peptide mix to ensure suitability and reproducibility, and to enable the identification of key peptides in complex peptide maps.
- Save time: two to three times faster than fully porous HPLC columns.
- Every instrument works harder: 4.6, 3.0, and 2.1 mm id columns are stable to 600 bar, enabling you to get the most from your UHPLC instruments. They can also deliver excellent performance for your legacy 400 bar instruments, too.
- Increased flexibility: achieve increased MS sensitivity with formic acid mobile phases on any HPLC.

These advanced biocolumns feature a 120 Å pore size with superficially porous 2.7 µm particles. They are specially tested with a challenging peptides mix to ensure reliable peptide mapping performance. In addition, AdvanceBio Peptide Mapping columns deliver exceptional resolution and speed for UHPLC, and excellent results for conventional HPLC.

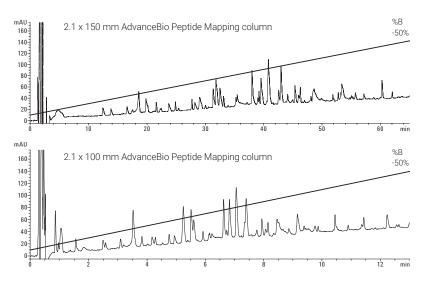
Column Specifications Bonded phase Pore Size Temp Limits pH Range Endcapped EC-C18 120 Å 60 °C 2.0–8.0 Double

Specifications represent typical values only


Tips and tools

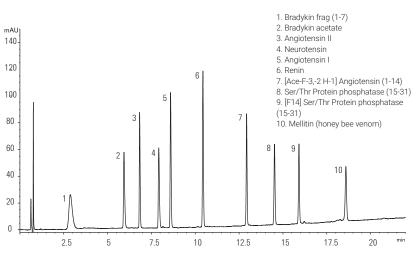
Do you want to know how scientists are using the AdvanceBio Peptide Mapping column? See:

Amano, M. *et al.* Detection of Histidine Oxidation in a Monoclonal Immunoglobulin gamma (IgG) 1 Antibody. *Analytical Chemistry*, 2014, 86 (15): 7536 -7543


Leah G. Luna and Katherine Coady, Identification of *X. laevis* Vitellogenin Peptide Biomarkers for Quantification by Liquid Chromatography Tandem Mass Spectrometry. J. *Anal Bioanal Tech*, 2014, 5:3

High resolution peptide map of erythropoietin digest

Fast and efficient peptide mapping of IgG


Column:	AdvanceBio Peptide Mapping 655750-902 2.1 x 100 mm, 2.7 μm				
	AdvanceBio Peptide Mapping 653750-902 2.1 x 150 mm, 2.7 μm				
Mobile phase:	A: H ₂ O + 0.1% FA (v/v) B: 90% ACN + 0.1% FA (v/v)				
Flow rate:	Various				
Injection volume:	15 µL				
Temperature:	40 °C				
Detector:	UV, 215/220 nm				
Sample:	1290 Infinity LC and 6530 accurate mass quadrupole time-of-flight LC/MS				

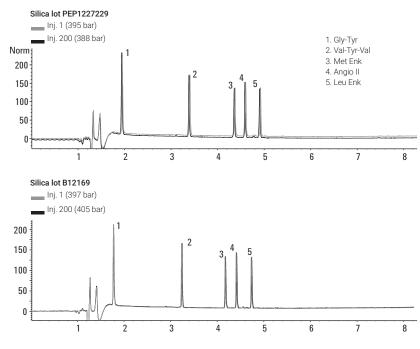

AdvanceBio Peptide Mapping column optimization for achieving a faster peptide mapping analysis. Gradient 10–40% B, DAD: 215 nm, 40 °C. Top panel, 75 min separation on a 2.1 x 150 mm column generated 59 peptide peaks (flow rate 0.2 mL/min, 211 bar). Bottom panel, optimized 14 min separation on a 2.1 x 100 mm column generated 57 peptide peaks (flow rate 0.6 mL/min, 433 bar).

Quality assurance testing with Agilent peptide mix

Column:	AdvanceBio Peptide Mapping 653750-902 2.1 x 150 mm, 2.7 μm
Flow rate:	3 µL
Gradient:	A, H ₂ O (0.1% TFA), B, ACN (0.1% TFA), 0–25 min, 15–65% B; 25–26 min, 65–95% B
Temperature:	55 °C
Detector:	220 nm
Sample:	Peptide Mapping Standards mix (0.5-1.0 μg/μL per peptide) p/n 5190-0583

Test mix used for every batch of AdvanceBio Peptide Mapping media. The mixture contains 10 hydrophilic, hydrophobic, and basic peptides, ranging in molecular weight from 757 to 2845 Da. Every column is also tested with a small-molecule probe to ensure efficiency.

Real stories from the lab


Bio bright spot

Learn how this lab manager was able to dramatically reduce downtime and improve user confidence.

www.agilent.com/chem/story25

Lot-to-lot reproducibility after 200 injections

Column:	AdvanceBio Peptide Mapping 651750-902 2.1 x 250 mm, 2.7 μm
Flow rate:	0.5 mL/min
Injection:	1 µL
Gradient:	A, H ₂ O (0.1% TFA), B, ACN (0.08% TFA), 0-8 min, 10-60% B; 8.1-9 min, hold 95% B
Temperature:	55 °C
Detector:	220 nm
Sample:	Sigma HPLC peptide standards

Injection	RT2 (min)	RT3 (min)	RT4 (min)	RT5 (min)
1	3.39	4.36	4.59	4.90
200	3.52	4.48	4.70	5.02
Injection	PW2	PW3	PW4	PW5
1	0.020	0.021	0.020	0.022
200	0.020	0.021	0.019	0.021

Injection	RT2 (min)	RT3 (min)	RT4 (min)	RT5 (min)
1	3.36	4.29	4.52	4.85
200	3.24	4.18	4.41	4.74
Injection	PW2	PW3	PW4	PW5
1	0.019	0.020	0.019	0.020
200	0.019	0.020	0.019	0.020

Superior reproducibility, lot-to-lot and run-to-run. A 2.1 x 250 mm AdvanceBio Peptide Mapping column was used for maximum resolution.

AdvanceBio Peptide Mapping

Description	Part No.
4.6 x 150 mm, 2.7 μm	653950-902
3.0 x 150 mm, 2.7 μm	653950-302
2.1 x 250 mm, 2.7 μm	651750-902
2.1 x 150 mm, 2.7 μm	653750-902
2.1 x 100 mm, 2.7 μm	655750-902
4.6 x 5 mm, Fast guard*	850750-911
3.0 x 5 mm, Fast guard*	853750-911
2.1 x 5 mm, Fast guard*	851725-911

* Fast guards extend column lifetime without slowing down the separation or affecting resolution.

Agilent peptide quality control standard

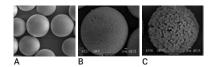
Use Agilent's ten-peptide quality control standard, the same standard Agilent uses to QC its columns, to evaluate your column performance over its lifetime. It can be used for HPLC or LC/MS. Approximately 20 injections per vial.

Agilent Peptide Quality Control Standard

Description	Part No.
Peptide quality control standard, 71 µg in 2 mL vial	5190-0583

Tips and tools

Peptide mapping is a powerful technique and the most widely used identity test for proteins, particularly those produced by recombinant means. There are several considerations to be made in addition to column selection for reproducible and accurate peptide maps, including protein digestion, sample preparation, method optimization, and so on. For fundamental techniques used in peptide mapping procedures and considerations when optimizing your peptide mapping separations, see *Keys for Enabling Optimum Peptide Characterizations: A Peptide Mapping "How to" Guide* (publication **5991-2348EN**).


www.agilent.com/search

Primary Structure Analysis

PLRP-S

- Contain durable and resilient polymer particles that deliver reproducible results over longer lifetimes
- Thermally and chemically stable
- Comply with USP L21 designation
- Used in bioscience, chemical, clinical research, energy, environmental, food and agriculture, material science, and pharmaceutical industries
- Pore sizes (100 Å to 4000 Å) for separations of small molecules to large complexes and polynucleotides

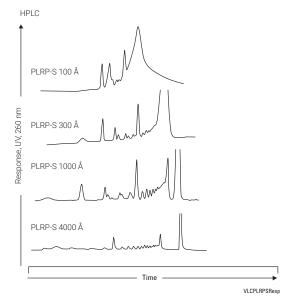
The PLRP-S family of columns consists of a range of pore sizes and particle sizes, all with identical chemistry and fundamental adsorptive characteristics. The particles are inherently hydrophobic. Therefore, no bonded phase or alkyl ligand is required for reversed-phase separations. This gives a highly reproducible material that is free from silanols and heavy metal ions. Columns within the extensive product range are suitable for micro separations, including bottom-up and top-down proteomics, analytical separations, and preparative purifications. In addition, process columns can be packed with bulk media.

Scanning electron micrographs (SEM) of PLRP-S 10 μm particles.

The difference in pore size is clearly seen. A is the small pore 100 Å B the larger pore 300 Å C the gigaporous 4000 Å

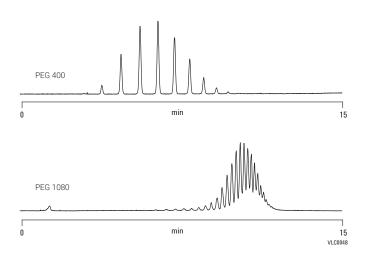
Column Specifications

pH range	1-14
Buffer content	Unlimited
Organic modifier	1-100%
Temperature limits	200 °C
Maximum pressure	3 μm: 275 bar/4000 psi
	5 μm, 8 μm, and 10 μm: 207 bar/3000 psi
	10–15 μm, 15–20 μm, and 30 μm: 103 bar/1500 psi

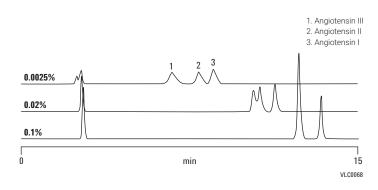

PLRP-S Applications

Pore size	Application	
100 Å	Small molecules/synthesis	
300 Å	Recombinant peptides/proteins	
1000 Å	Large proteins	
4000 Å	DNA/high speed	

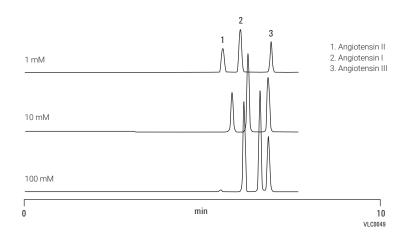
Primary Structure Analysis


HPLC of 25 bp DNA ladder

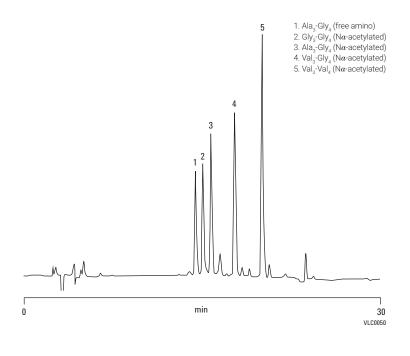
Column:	PLRP-S, 2.1 x 150 mm
Mobile phase:	A: 100 mM TEAA B: 100 mM TEAA in 50% water:50% ACN
Flow rate:	200 µL/min
Gradient:	12.5-50% B in 150 min


Polyethylene glycols

Column:	PLRP-S 100 Å PL1111-3500 4.6 x 150 mm, 5 μm
Mobile phase:	A: H ₂ 0 B: ACN
Flow rate:	1 µL/min
Injection volume:	10 µL
Gradient:	10–30% B in 12 min, held at 30% B for 3 minutes
Detector:	ELS (neb=50 °C, evap=70 °C, gas=1.6 SLM)
Sample conc:	1 mg/mL


Exploiting chemical stability-TFA concentration

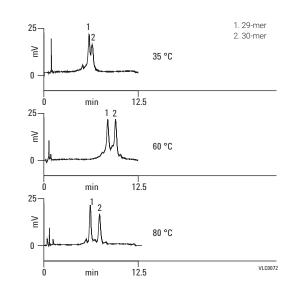
Column:	PLRP-S 100 Å PL1512-5500 4.6 x 250 mm, 5 μm
Mobile phase:	A: TFA (various %) in water B: TFA (various %) in ACN
Flow rate:	1.0 mL/min
Gradient:	Linear 12–40% B in 15 min
Detector:	ELS (neb=75 °C, evap=85 °C, gas=1.0 SLM)


Exploiting chemical stability– NH_4OH concentration

PLRP-S 100 Å PL1512-5500 4.6 x 250 mm, 5 μm
A: NH₄OH (various mM) in water B: NH₄OH (various mM) in ACN
1.0 mL/min
Linear 10–100% B in 15 min
ELS (neb=80 °C, evap=85 °C, gas=1.0 SLM)

Alberta Peptide Institute test mix

Column:	PLRP-S 100 Å PL1512-5500 4.6 x 250 mm, 5 μm
Mobile phase:	A: 0.1% TFA in 99% water:1% ACN B: 0.1% TFA in 70% water:30% ACN
Flow rate:	1 µL/min
Gradient:	0-100% B in 30 min
Detector:	UV, 220 nm



Whey proteins in dairy samples-milk

Column:	PLRP-S 300 Å PL1512-3801 4.6 x 150 mm, 8 μm		actalbumin actoglobulin (B chain)
Mobile phase:	A: 0.1% TFA in 99% water: 1% ACN B: 0.1% TFA in 1% water: 99% ACN		actoglobulin (A chain)
Flow rate:	1.0 mL/min		
Injection volume:	10 µL		
Gradient:	36–48% B, 0–24 min, 48–100% B, 24–30 min 100% B, 30–35 min, 100-36% B, 35–40 min		
Detector:	UV, 220 nm	0 min 24	VLC0074

Temperature as a tool to enhance mass transfer and improve resolution of oligonucleotides in ion-pair reversed-phase HPLC

Column:	PLRP-S 100 Å PL1512-1300 4.6 x 50 mm, 3 μm
Mobile Phase:	A: 100 mM TEAA B: 100 mM TEAA in 25% ACN
Flow Rate:	1.0 mL/min
Gradient:	5% change in buffer B over 5 min
Temperature:	35 °C, 60 °C, or 80 °C
Detector:	UV, 254 nm

Large fibrous proteins

Column:	PLRP-S 300 Å PL1512-3801 4.6 x 150 mm, 8 μm		2
Mobile phase:	A: 0.25% TFA in water B: 0.25% TFA in 5% water:95% ACN	1. Collagen (120,000 mol wt) 2. Fibrinogen (340,000 mol wt)	
Flow rate:	1.0 mL/min		
Injection volume:	10 µL		1
Gradient:	20-60% B in 15 min	2	
Detector:	UV, 220 nm	PLRP-S 300 Å	PLRP-S 1000 Å
		0 min 12	0 min 18 VLC0051

PLRP-S HPLC Columns

Size (mm)	Particle Size (µm)	PLRP-S 100 Å USP L21	PLRP-S 300 Å USP L21	PLRP-S 1000 Å USP L21	PLRP-S 4000 Å USP L21
4.6 x 250	8	PL1512-5800	PL1512-5801	PL1512-5802	
4.6 x 150	8	PL1512-3800	PL1512-3801	PL1512-3802	PL1512-3803
4.6 x 50	8		PL1512-1801	PL1512-1802	PL1512-1803
4.6 x 250	5	PL1512-5500	PL1512-5501		
4.6 x 150	5	PL1111-3500	PL1512-3501		
4.6 x 50	5	PL1512-1500	PL1512-1501	PL1512-1502	PL1512-1503
4.6 x 150	3	PL1512-3300	PL1512-3301		
4.6 x 50	3	PL1512-1300	PL1512-1301		
2.1 x 250	8		PL1912-5801		
2.1 x 150	8		PL1912-3801	PL1912-3802	PL1912-3803
2.1 x 50	8		PL1912-1801	PL1912-1802	PL1912-1803
2.1 x 250	5	PL1912-5500	PL1912-5501		
2.1 x 150	5	PL1912-3500	PL1912-3501		
2.1 x 50	5	PL1912-1500	PL1912-1501	PL1912-1502	PL1912-1503
2.1 x 150	3	PL1912-3300	PL1912-3301		
2.1 x 50	3	PL1912-1300	PL1912-1301		
1.0 x 50	8			PL1312-1802	
1.0 x 50	5	PL1312-1500		PL1312-1502	
1.0 x 10	5			PL1C12-2502	
1.0 x 150	3	PL1312-3300			
1.0 x 50	3	PL1312-1300			
PLRP-S guar for 3.0 x 5.0 r	9	PL1612-1801	PL1612-1801	PL1612-1801	PL1612-1801
Guard cartric for 3.0 x 5.0 r	lge holder mm cartridges	PL1310-0016	PL1310-0016	PL1310-0016	PL1310-0016

Tips and tools

For microbore columns ordering information, turn to Page 169.

For PLRP-S prep to process columns and media ordering information, turn to Page 182.

AdvanceBio Desalting-RP

Reversed-phase desalting for on-line removal of salt ions before MS detection

Affinity, ion exchange, and size exclusion chromatography are commonly used techniques in the analysis of proteins such as monoclonal antibodies. However, these techniques require aqueous mobile phases that contain nonvolatile salts. These nonvolatile salts present a problem when using MS detection as they cause signal suppression and can contaminate the MS detector through salt deposition leading to increased maintenance and instrument downtime. AdvanceBio Desalting-RP cartridges solve this problem, enabling fast and efficient on-line removal of salt ions before MS detection. These cartridge-style columns can be used on their own on any LC system to desalt collected fractions. Or on 1290 Infinity II 2D-LC system as the second dimension to desalt after the first dimension separation.

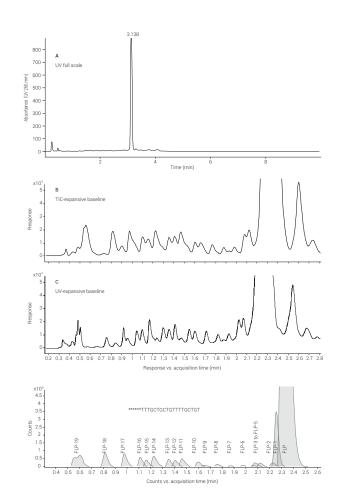
AdvanceBio Desalting-RP, p/n PL1612-1102 and cartridge holder, p/n 820999-901

AdvanceBio Desalting-RP

Description	Part No.
AdvanceBio Desalting-RP, 2.1 x 12.5 mm, 2/pk	PL1612-1102
Cartridge holder	820999-901

AdvanceBio Oligonucleotide

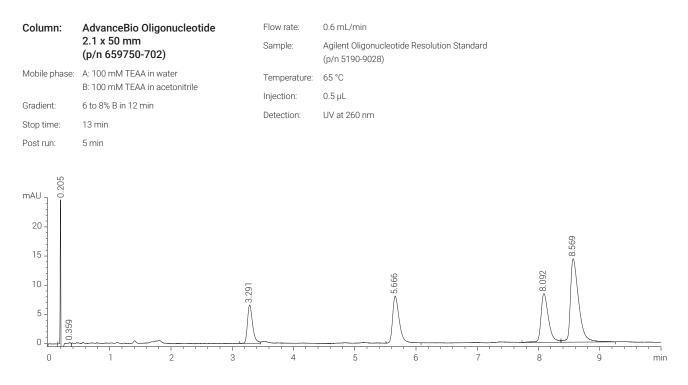
To successfully separate trityl-off, deprotected oligonucleotides, you need columns that have high resolving power and are robust enough to withstand challenging conditions.


Agilent AdvanceBio oligonucleotide columns feature high efficiency, 2.7 µm superficially porous Poroshell particles. Using technology exclusive to Agilent, we chemically modify the particles to make them exceedingly resistant to high pH mobile phases. We also bond them with an end-capped C18 phase that delivers excellent selectivity for oligonucleotides. What's more, we test every batch of AdvanceBio oligonucleotide media with a resolution standard to ensure consistent performance.

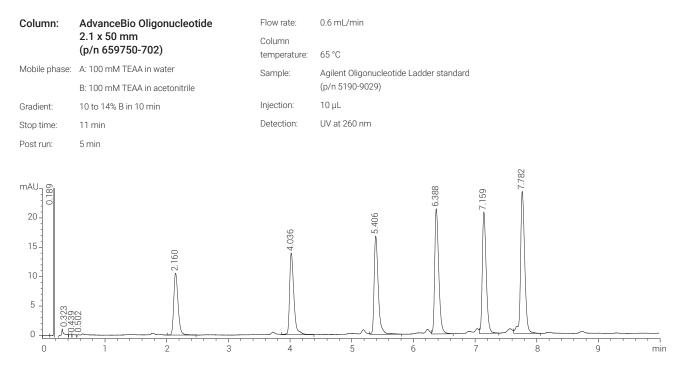
The family of AdvanceBio products are designed to deliver consistent, exceptional performance for the complete characterization of proteins, antibodies, conjugates, new biological entities and biopharmaceuticals.

Column Specifications						
Bonded Phase	Particle Size	Pore Size	Temp Limit	pH Range	Endcapped	Pressure Limit
C18	2.7 µm	100 Å	65 °C	3.0-11.0	Double	600 bar

Column:	AdvanceBio Oligonucleotide 2.1 x 50 mm (p/n 659750-702)
Mobile phase:	A: HFIP:TEA (400 mM:15mM) in water B: MeOH:mobile phase A (50:50)
Flow rate:	0.4 mL/min
Gradient:	30-40% B in 0.5 min; 40-70% B in 5 min
Sample:	25 mer DNA
Temperature:	65 °C
Detection:	UV at 260 nm
Detection:	MS
Min range:	400 m/z
Max range:	1,700 m/z
Scan rate:	3.00 spectra/s
lon polarity:	-ve
VCap:	3,500
Nozzle voltage	: 1,000 V
Fragmentor:	200


Deconvoluted data from TIC of a 25-mer DNA oligonucleotide separated by the AdvanceBio Oligonucleotide column

AdvanceBio Oligonucleotide


Description	id (mm)	Length (mm)	Particle Size (µm)	Part No.
Conventional	2.1	150	2.7	653750-702
Conventional	2.1	100	2.7	655750-702
Conventional	2.1	50	2.7	659750-702
UG Guard, 600 bar	2.1	5	2.7	821725-921
Conventional	4.6	150	2.7	653950-702
Conventional	4.6	100	2.7	655950-702
Conventional	4.6	50	2.7	659950-702
UG Guard, 600 bar	4.6	5	2.7	820750-921

AdvanceBio Oligonucleotide standards

To ensure performance for your separations, every batch of AdvanceBio Oligonucleotide media is tested with the Agilent Oligonucleotide Resolution standard. The Oligonucleotide Resolution standard containing 14, 17, 20, and 21 mer synthetic oligonucleotides is designed to demonstrate N / N-1 resolution.

Agilent also offers an Oligonucleotide Ladder standard containing 15, 20, 25, 30, 35, and 40 mer synthetic oligodeoxythymidines, an excellent tool for demonstrating column selectivity and reproducibility.

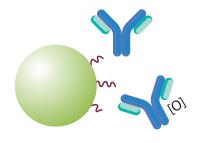
AdvanceBio Oligonucleotide Standards

Description	Part No.
Oligonucleotide Resolution Standard	5190-9028
Oligonucleotide Ladder Standard	5190-9029

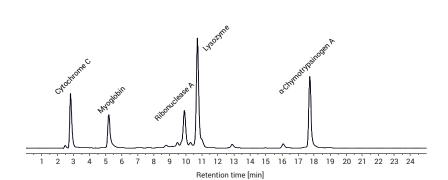
Intact Analysis Using Hydrophobic Interaction Chromatography

AdvanceBio HIC

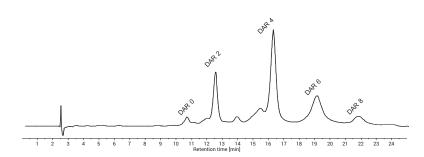
AdvanceBio HIC columns deliver high resolution, robust, and reproducible separations of native proteins at the intact level.


Built using the capabilities of the ZORBAX fully porous particles and proprietary bonding technology, these columns provide new levels of hydrophobicity and versatile single chemistry to address particularly challenging molecules such as monoclonal antibodies (mAbs), antibody drug conjugates (ADCs), and other recombinant proteins.

Together with the 1260 Infinity II bio-inert LC system, the AdvanceBio HIC provides uncompromised performance and data consistency during characterization and validation.


- Optimized selectivity: ideal for mAb oxidation and ADC DAR ratios.
- Single chemistry: reduces the need for multiple-column screening for different CQAs.
- Enhanced robustness: improved column lifetime for ultimate confidence in your data.
- Proven performance: every batch of media is tested with NIST mAb.
- High quality: each column is individually tested to ensure packing efficiency.
- Greater productivity: shorter columns reduce analysis time while maintaining separation performance.

Column Specifications					
Pore Size	Particle Size	Temperature Limit	pH Range	Pressure Limit	Flow Rate*
450 Å	3.5 µm	60 °C (at pH 7)	2.0-8.0 (at 35 °C)	400 bar (typical operating pressure <200 bar)	0.5–1.0 mL/min (4.6 mm id)


*In some cases, lowering the flow rate to 0.3 mL/min and extending gradient time may further improve resolution.

Column:	AdvanceBi 4.6 x 100 r		5 µm	
Eluent A:	2 M Ammonium Sulfate, 50 mM Sodium Phosphate, pH 7.0			
Eluent B:	50 mM Sodiu	ım Phos	phate, pH 7.0	
Gradient:	Time (min) 0 20 25 30 40	%A 100 0 100 100	%B 0 100 100 0	
Flow rate:	0.5 mL/min			
Temperature:	30 °C			
Injection volume:	5μL			
Detection:	UV, 220 nm			

Column:	AdvanceBio HIC 4.6 x 100 mm, 3.5 μm				
Eluent A:	2 M Ammonium Sulfate, 50 mM Sodium Phosphate, pH 7.0				
Eluent B:	50 mM Sodiu	m Phos	sphate,	pH 7.0	
Gradient:	Time (min) 0 20 25 30 40	%A 50 0 50 50	%B 45 75 75 45 45	%C 5 25 25 5 5	
Flow rate:	0.5 mL/min				
Temperature:	30 °C				
Injection volume:	5μL				
Detection:	UV, 220 nm				

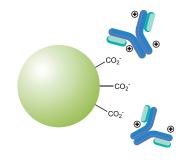
Agilent AdvanceBio HIC Columns

Description	Part No.
- AdvanceBio HIC, 4.6 x 100 mm, 450 Å, 3.5 μm	685975-908
	681975-908

Charge Variant Analysis

Purify proteins and other charged molecules

Ion-exchange chromatography (IEX) is a highly sensitive technique that allows you to separate ions and polar molecules based on their charge. Like SEC, IEX can be used to separate proteins in their native state.


Applying IEX to charge variant analysis

During production and purification, antibodies can exhibit changes in charge heterogeneity as a result of amino acid substitutions, glycosylation, phosphorylation, and other post-translational or chemical modifications. Because these changes can impact stability and activity—or cause immunologically adverse reactions—the analysis of charge heterogeneity in monoclonal antibody (mAb) preparations is critical to biopharmaceutical manufacture.

In protein analysis, charge variations at a given pH indicate a change in the primary molecular structure—resulting in additional forms of the protein in question. These are called isoforms (or charge variants), and can be resolved by IEX chromatography. IEX is also useful as a preparative technique.

Because these changes can impact stability and activity—or cause immunologically adverse reactions—the analysis of charge variants is critical to biopharmaceuticals.

As a leading supplier to the biopharmaceutical industry, Agilent understands that quality and consistency are critical to providing safe, highly efficacious therapeutics. Agilent ion-exchange BioHPLC columns offer the speed, resolution, and reproducibility you need to quickly and cost-effectively get life-changing products into the hands of those who need them.

The pages that follow describe Agilent's family of weak and strong ion-exchangers—both anionic and cationic.

- Nonporous Bio IEX columns are designed for high resolution, high efficiency, and high recovery separations.
- Bio MAb columns are optimized for separating charge isoforms of monoclonal antibodies.
- Porous IEX columns (PL-SAX and PL-SCX) are chemically stable, and are available in two pore sizes, allowing you to separate peptides, oligonucleotides, and very large proteins.
- Bio-Monolith IEX columns are uniquely suited for separating antibodies, viruses, and DNA.
- Buffer Advisor software is an ideal solution for automated protein separation by ionic strength gradients.

Tips and tools

For more information about the Agilent Buffer Advisor software, see publication 5991-1408EN

www.agilent.com/search

Ion-exchange column selection

Application	Agilent Columns	Notes
Monoclonal antibodies	Bio MAb	Thorough characterization of monoclonal antibodies includes the identification and monitoring of acidic and basic isoforms. Bio MAb HPLC columns feature a unique resin specifically designed for high resolution charge-based separations of monoclonal antibodies.
Peptides and proteins	Bio IEX	Bio IEX columns are packed with polymeric, nonporous, ion-exchange particles. The Bio IEX columns are designed for high resolution, high recovery, and highly efficient separations.
Proteins, peptides, and deprotected synthetic oligonucleotides	PL-SAX	The strong anion-exchange functionality, covalently linked to a fully porous chemically stable polymer, extends the operating pH range. In addition, the anion-exchange
	• 1000 Å • 4000 Å	capacity is independent of pH. For synthetic oligonucleotides, separations using denaturing conditions of temperature, organic solvent, and high pH are all possible. The 5 µm media deliver separations at high resolution while the 30 µm media are
Globular proteins and peptides	PL-SAX 1000 Å	used for medium pressure liquid chromatography
Very large biomolecules/high speed	PL-SAX 4000 Å	
Small peptides to large proteins	PL-SCX	PL-SCX is a macroporous PS/DVB matrix with a very hydrophilic coating and strong
and very large biomolecules	• 1000 Å • 4000 Å	cation-exchange functionality. This process is controlled to provide the optimum density of strong cation-exchange moieties for the analysis, separation, and purification of a wide range of biomolecules. The 5 μm media deliver separations at higher resolution while the 30 μm media are used for medium pressure liquid chromatography.
Antibodies (IgG, IgM), plasmid DNA, viruses, phages, and other macro biomolecules	Bio-Monolith	Strong cation-exchange, strong and weak anion-exchange phases. Bio-Monolith HPLC columns are compatible with InfinityLab LC series.
	Bio-Monolith QA Bio-Monolith DEAE Bio-Monolith SO ₃	
Viruses, DNA, large proteins	Bio-Monolith QA	
Plasmid DNS, bacteriophages	Bio-Monolith DEAE	
Proteins, antibodies	Bio-Monolith SO ₃	

Bio MAb HPLC columns

- A packing support composed of a rigid, spherical, highly cross-linked polystyrene divinylbenzene (PS/DVB) nonporous bead
- Particles grafted with a hydrophilic polymeric layer, virtually eliminating nonspecific binding of antibody proteins
- A different process is used to layer the weak cation-exchange phase to the particle giving it a higher density than the Bio WCX column particles
- Specifically designed for the separation of charge isoforms of monoclonal antibodies

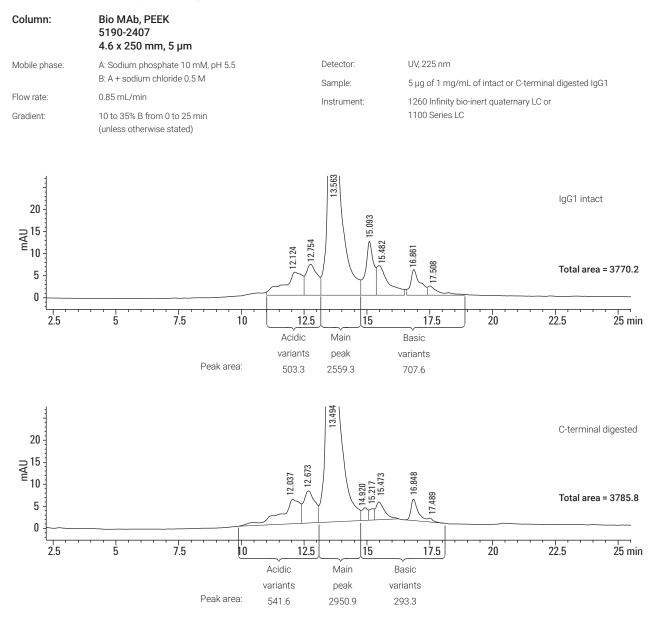
Thorough characterization of monoclonal antibodies includes the identification and monitoring of acidic and basic isoforms. Bio MAb HPLC columns feature a unique resin specifically designed for high resolution, charge-based separations of monoclonal antibodies. These columns are compatible with aqueous solution buffers, acetonitrile/acetone/methanol, and water mixtures. Commonly used buffers are phosphate, tris, MES, and acetate.

Bio MAb columns are available in 1.7, 3, 5, and 10 μm sizes, providing higher resolution with smaller particles.

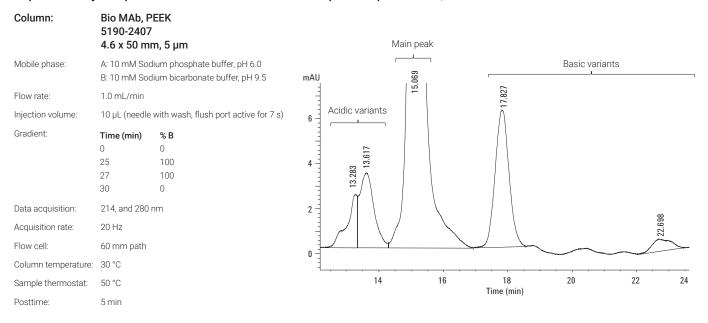
Column Specifications						
Bonded Phase	id	Particle Size	pH Stability	Operating Temperature Limit	Flow Rate	
Weak cation-exchange (carboxylate)	2.1 and 4.6 mm	1.7, 3, 5, and 10 µm	2-12	80 °C	0.1-1.0 mL/min	

Tips and tools

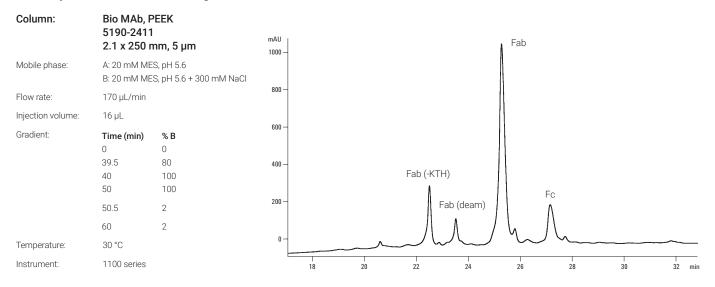
Are you looking to increase your throughput for charge variant analysis of monoclonal antibodies? If so, see:


Reducing Cycle Time for Charge Variant Analysis of Monoclonal Antibodies (publication **5991-4722EN**)

www.agilent.com/search

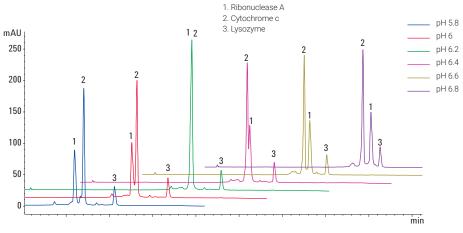

Charge Variant Analysis

Consistent ion-exchange mAb separation



Calculation of C-terminal digested IgG1 using a Bio MAb 5 µm column on the 1260 Infinity bio-inert quaternary LC.

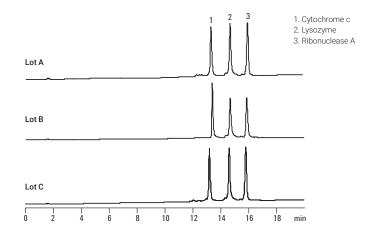
Reproducibility and precision-Bio MAb columns enable precise quantitation, robust methods



WCX separation of Fab and Fc fragments of Trastuzumab

Column:	Bio MAb, PEEK 5190-2407 4.6 x 250 mm, 5 μm		
Instrument:	1260 Infinity Bio-inert Quaternary LC	Gradient:	0 min-20 mM NaCl
Buffer:	A: H ₂ O B: NaCl 3 M C: MES (2-N-morpholino) ethanesulfonic acid monohydrate) 60 mM D: MES-Na (2-(N-morpholino) ethanesulfonic acid sodium salt) 35 mM		5 min–20 mM NaCl 30 min–500 mM NaCl 35 min–1,000 mM NaCl 36 min–20 mM NaCl
Sample:	Mix of three proteins, dissolved in PBS	Injection volume:	10 µL
	(phosphate buffered saline), pH 7.4	Thermostat:	4 °C
	Ribonuclease A: 13,700 Da, pl 9.6	Temperature TCC:	25 °C
	Cytochrome c: 12,384 Da, pl 10-10.5 Lysozyme: 14,307 Da, pl 11.35	DAD:	280 nm/4 nm Reference: OFF
Flow rate:	1 mL/min	Peak width:	>0.05 min (1.0 s respose time)(5 Hz)

Method development using Buffer Advisor software-determination of optimum pH



pH scouting for the separation of a three-protein mix using dynamically mixed quaternary gradients

Virtually eliminate retention time variations

Column:	Bio MAb, stainless steel 5190-2413 4.6 x 250 mm, 10 μm
Mobile phase:	A: 10 mM Sodium phosphate, pH 6.0 B: A + 1.0 M Sodium chloride
Flow rate:	1.0 mL/min
Gradient:	0-100% B in 42 min
Temperature:	25 °C
Detector:	UV, 214 nm

The combination of well-controlled resin production, column surface chemistry, and column packing virtually eliminates retention time variations from column-to-column and lot-to-lot.

Agilent Bio MAb HPLC columns

Size (mm)	Particle Size (µm)	Bio MAb PEEK	Pressure Limit	Bio MAb Stainless Steel	Pressure Limit
21.2 x 250	5			5190-6885	275 bar, 4000 psi
10 x 250	5			5190-6884	275 bar, 4000 psi
4.6 x 250	10	5190-2415	275 bar, 4000 psi	5190-2413	275 bar, 4000 psi
4.6 x 50	10	5190-2416	275 bar, 4000 psi		
4.6 x 250	5	5190-2407	400 bar, 5800 psi	5190-2405	400 bar, 5800 psi
4.6 x 50	5	5190-2408	400 bar, 5800 psi		
4.6 x 50	3			5190-2403	551 bar, 8000 psi
4.6 x 50	1.7			5190-2401	600 bar, 8700 psi
4.0 X 10, guard	10			5190-2414	275 bar, 4000 psi
4.0 X 10, guard	5			5190-2406	413 bar, 6000 psi
4.0 X 10, guard	3			5190-2404	551 bar, 8000 psi
4.0 X 10, guard	1.7			5190-2402	600 bar, 8700 psi
2.1 x 250	10	5190-2419	275 bar, 4000 psi		
2.1 x 50	10	5190-2420	275 bar, 4000 psi		
2.1 x 250	5	5190-2411	400 bar, 5800 psi		
2.1 x 50	5	5190-2412	400 bar, 5800 psi		

Bio IEX HPLC columns

- Highly cross-linked and rigid nonporous poly(styrene divinylbenzene) (PS/DVB) particles are grafted with a hydrophilic polymeric layer, eliminating nonspecific binding
- Uniform, densely packed ion-exchange functional groups are chemically bonded to the hydrophilic layer (multiple ion-exchange groups per anchor) to increase column capacity
- Particles, coating, and bonding are resistant to high pressures, promoting higher resolution and faster separations
- Multiple ion-exchange groups are captured on one anchor to increase cap

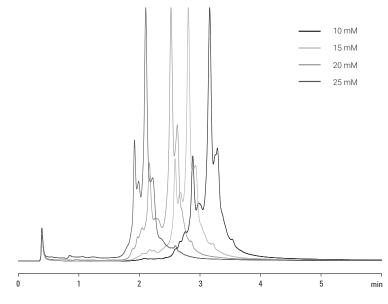
Bio IEX HPLC columns are packed with polymeric, nonporous, ion-exchange particles and are designed for high resolution, high recovery, and highly efficient separations of peptides, oligonucleotides, and proteins.

The Bio IEX family includes strong cation-exchange (SCX), weak cation-exchange (WCX), strong anion-exchange (SAX), and weak anion-exchange (WAX) phases. All phases are available in 1.7, 3, 5, and 10 μ m nonporous particles.

Column Specifications

Bonded Phase	id	Particle Size	pH Stability	Operating Temperature Limit	Flow Rate
SCX (strong cation-exchange)–SO ₃ H	2.1 and 4.6 mm	1.7, 3, 5, and 10 µm	2-12	80 °C	0.1–1.0 mL/min
WCX (weak cation-exchange)–COOH					
SAX (strong anion-exchange) $-N(CH_3)_3$					
WAX (weak cation-exchange) $-N(C_2H_5)_2$					

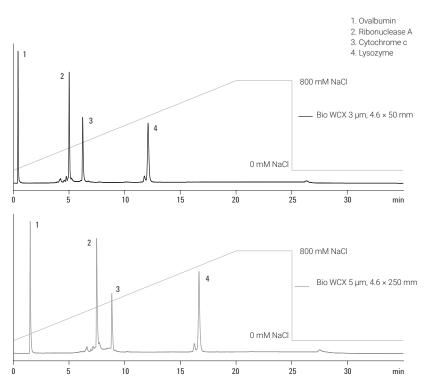
Tips and tools


For further information on optimizing your charged variant analysis, refer to: *Ion-exchange chromatography for biomolecule analysis: a "how-to" guide* (publication **5991-3775EN**), and *Agilent ion-exchange BioHPLC columns, characterize charged variants of proteins with speed and confidence* (publication **5991-2449EN**)

www.agilent.com/search

Shortened and simplified charge variant workflow

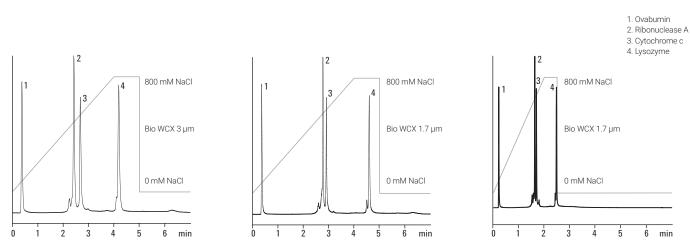
Column:	Bio WCX, stainless steel	Injection volume:	10 µL
	5190-2443 4.6 x 50 mm, 3 μm	Gradient:	Conditions for chromatograms shown: pH 5.0 to 7.0, 10 to 25 mM buffer strength
	Bio SCX, stainless steel 5190-2423 4.6 x 50 mm, 3 μm		sodium chloride (NaCl) 0 to 500 mM, 0 to 15 min sodium chloride (NaCl) 500 mM, 15 to 20 min DOE experiments
Mobile phase:	A: Water B: Sodium chloride 1.5 M		pH 5.0 to 7.0 0 to 200 mM, 0 to 250 mM, and 0 to 300 mM NaCl
	C: Monosodium phosphate 40 mM	Temperature:	Ambient
	D: Disodium phosphate 40 mM By combining predetermined proportions of C and D	Detector:	UV, 220 nm
	as determined by the Buffer Advisor software,	Sample:	IgG monoclonal antibody
	buffer solutions at the desired pH range and strength were created.	Sample conc:	2 mg/mL (in sodium phosphate buffer 20 mM, pH 6.0)
		Instrument:	1260 Infinity bio-inert quaternary LC
Flow rate:	1.0 mL/min		



Automated method development for optimized charge variant separations. Optimizing buffer strength at pH 6.5 from the screening chromatograms of a monoclonal IgG separation.

Charge Variant Analysis

Achieve faster analysis time with smaller particles and shorter column lengths-speed up your separation by 30%


Column:	Bio WCX, stainless steel 5190-2445 4.6 x 250 mm, 5 μm
	Bio WCX, stainless steel 5190-2443 4.6 x 50 mm, 3 μm
Mobile phase:	A: Sodium phosphate 20 mM, pH 6.5 B: A + sodium chloride 1.6 M
Flow rate:	1.0 mL/min
Injection volume:	10 µL
Gradient:	0 to 50% B
Temperature:	Ambient
Detector:	UV, 220 nm
Sample conc:	0.5 mg/mL
Instrument:	1260 Infinity bio-inert quaternary LC

Protein separation on a Bio WCX 4.6 x 50 mm, 3 μ m column versus a Bio WCX 4.6 x 250 mm, 5 μ m column (flow rate 1.0 mL/min). Faster analysis times were achieved through smaller particle size and shorter column length—samples eluted from the longer column in 17 min, and in just 12 min from the shorter column.

Smaller particle sizes provide increased resolution

Column:	Bio WCX, stainless steel 5190-2443 4.6 x 50 mm, 3 μm Bio WCX, stainless steel 5190-2441 4.6 x 50 mm, 1.7 μm
Mobile phase:	A: Sodium phosphate 20 mM, pH 6.5 B: A + sodium chloride 1.6 M
Injection volume:	10 µL
Gradient:	0 to 50% B
Temperature:	Ambient
Detector:	UV, 220 nm
Sample conc:	0.5 mg/mL
Instrument:	1260 Infinity bio-inert quaternary LC

Left and middle: Protein separation on a Bio WCX 3 µm column versus a Bio WCX 1.7 µm column (flow rate 1.0 mL/min). Right: By increasing the flow rate to 1.7 mL/min, the separation time was reduced to less than 3 minutes. (A Bio WCX column was used.) Reduce analysis time—without sacrificing peak shape and resolution—by increasing flow rate.

Analysis of proteins by anion-exchange columns using the Agilent 1260 Infinity bio-inert quaternary LC system

Column: Buffer: Gradient 1 M:	Bio WAX, PEEK 5190-2487 4.6 x 250 mm, 5 μm A: 20 mM tris, pH 7.6 B: 20 mM tris, pH 7.6 + 2 M NaCl, 1 M KCl, 1 M CH ₃ COONa, 1 M [(CH ₃)4N]Cl 5 min–100% A 20 min–70% B 25 min–100% B	mAU 70 60 50 40 30 20	2. Con 3. Con 1 4. <i>a</i> -La		m B, pl 6.09 .5 4.5	5	(%) Myoglobin Conalbumin Isoform A Conalbumin Isoform B <i>a</i> -Lactalbumin	0.066 0.081	RSD Area 0.413 0.809 n/a n/a
Gradient 2 M:	5 min-100% A 20 min-35% B 25 min-50% B 25.01 min-100% B	10 0 -10					Trypsin Inhibitor	0.075	1.024
Stop time:	30 min	1 0	5	10	15	20	25	min	
Posttime:	20 min	Figure	1. Protein separatio	n by AEX by a li	inear gradient usii	ng 2 M N	laCl as eluting salt.		
Temperature:	25 °C								
Flow rate:	0.5 mL/min								
Injection volume:	5 µL								
DAD:	280 nm	mAU 80	1						
	0.025 min (0.5 s response time) (10 Hz) ation see application note w.agilent.com/search)	70 - 60 - 50 - 40 - 30 - 20 - 10 -				5	(%) Myoglobin Conalbumin Isoform A Conalbumin Isoform B <i>a</i> -Lactalbumin Trypsin Inhibitor		RSD Area 0.066 n/a n/a 0.66 1.492
		0 0 Figure	2. Protein separatio	10 n by AEX by a li	15 inear gradient usi	20 ng 1 M K	25 Cl as eluting salt.	, 1_ min	
		mAU 120 100 80	1		4		(%) Myoglobin Conalbumin Isoform A Conalbumin Isoform B a-Lactalbumin	RSD (%) 0.077 0.035 0.033 0.040	RSD Area 2.346 n/a n/a 4.606

-20

Ò

Figure 3. Protein separation by AEX by a linear gradient using 1 M [(CH_3)4N]Cl) as eluting salt.

min

Bio IEX HPLC Columns, PEEK

Size (mm)	Particle Size (µm)	Pressure Limit	Bio SCX Part No.	Bio WCX Part No.	Bio SAX Part No.	Bio WAX Part No.
4.6 x 250	10	275 bar, 4000 psi	5190-2435	5190-2455	5190-2475	5190-2495
4.6 x 50	10	275 bar, 4000 psi	5190-2436	5190-2456	5190-2476	5190-2496
4.6 x 250	5	400 bar, 5800 psi	5190-2427	5190-2447	5190-2467	5190-2487
4.6 x 50	5	400 bar, 5800 psi	5190-2428	5190-2448	5190-2468	5190-2488
2.1 x 250	10	275 bar, 4000 psi	5190-2439	5190-2459	5190-2479	5190-2499
2.1 x 50	10	275 bar, 4000 psi	5190-2440	5190-2460	5190-2480	5190-2500
2.1 x 250	5	400 bar, 5800 psi	5190-2431	5190-2451	5190-2471	5190-2491
2.1 x 50	5	400 bar, 5800 psi	5190-2432	5190-2442	5190-2462	5190-2492
-						

Tips and tools

Use Agilent solvent filters to remove particles from self-prepared buffers and mobile phases.

Visit: www.agilent.com/chem/solvent-filters-degassers

Bio IEX HPLC Columns, Stainless Steel

Size (mm)	Particle Size (µm)	Pressure Limit	Bio SCX Part No.	Bio WCX Part No.	Bio SAX Part No.	Bio WAX Part No.
21.2 x 250	5		5190-6879	5190-6881	5190-6883	5190-6877
10 x 250	5		5190-6878	5190-6880	5190-6882	5190-6876
4.6 x 250	10	275 bar, 4000 psi	5190-2433	5190-2453	5190-2473	5190-2493
4.6 x 250	5	413 bar, 6000 psi	5190-2425	5190-2445	5190-2465	5190-2485
4.6 x 150	3					5190-6875
4.6 x 50	3	551 bar, 8000 psi	5190-2423	5190-2443	5190-2463	5190-2483
4.6 x 50	1.7	600 bar, 8700 psi	5190-2421	5190-2441	5190-2461	5190-2481
4.0 x 10, guard	10	275 bar, 4000 psi	5190-2434	5190-2454	5190-2474	5190-2494
4.0 x 10, guard	5	413 bar, 6000 psi	5190-2426	5190-2446	5190-2466	5190-2486
4.0 x 10, guard	3	551 bar, 8000 psi	5190-2424	5190-2444	5190-2464	5190-2484
4.0 x 10, guard	1.7	600 bar, 8700 psi	5190-2422	5190-2442	5190-2462	5190-2482

Tips and tools

For further information see:

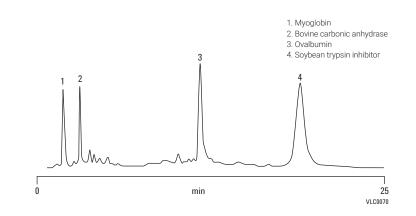
Optimizing protein separations with Agilent weak cation-exchange columns (publication **5990-9628EN**) Faster separations using Agilent weak cation-exchange columns (publication **5990-9931EN**) pH Gradient elution for improved separation of monoclonal antibody variants (publication **5990-9629EN**) Optimizing protein separations with cation-exchange chromatography using Agilent Buffer Advisor (publication **5991-0565EN**)

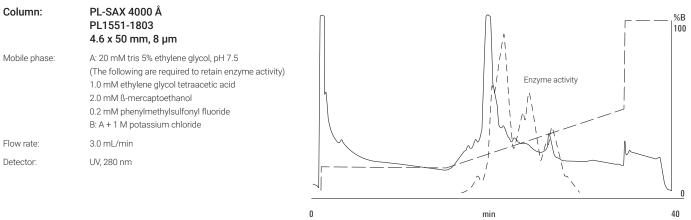
www.agilent.com/search

PL-SAX Strong Anion-Exchange columns

- Small particles deliver excellent chromatographic performance
- Wide range of particle sizes and two pore sizes for flexible analysis to scale up purification
- Exceptional stability for long column lifetime

PL-SAX -N(CH₉)₃⁺ is ideal for the anion-exchange HPLC separations of proteins, peptides, and deprotected synthetic oligonucleotides under denaturing conditions. The strong anion-exchange functionality, covalently linked to a chemically stable fully porous polymer, extends the operating pH range. In addition, the anion-exchange capacity is independent of pH. For synthetic oligonucleotides, separations using denaturing conditions of temperature, organic solvent, and high pH are all possible. PL-SAX delivers improved chromatography for self-complementary or G-rich sequences that may associate to form aggregates or hairpin structures. The 5 μ m material provides high-efficiency separations of n and n-1 sequences. A wide range of particle sizes and column geometries permits analysis scale-up to purification. The strong anion-exchange functionality provides a material with exceptional chemical and thermal stability, even with sodium hydroxide eluents, leading to long column lifetime.


Column Specificati	ons				
Bonded Phase	id	Particle Size (mm)	Pore Size (µm)	pH Stability	Operating Temperature Limit
Strong anion-exchange	2.1, 4.6, 7.5, 25, 50, and 100	5, 8, 10, and 30	1000 Å and 4000 Å	1-14	80 °C


Charge Variant Analysis

Standard ion-exchange protein separation

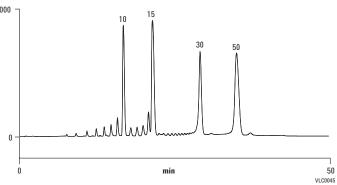
Column:	PL-SAX 1000 Å PL1551-1502 4.6 x 50 mm, 5 μm
Mobile phase:	A: 10 mM tris HCl, pH 8 B: A + 350 mM sodium chloride, pH 8
Gradient:	0-100% B in 20 min
Flow rate:	1.0 mL/min
Detector:	UV, 220 nm

Analysis of choline kinase

Separation courtesy of T Porter, Purdue University, USA

Analysis of representative whey proteins

Column:	PL-SAX 1000 Å PL1551-1802 4.6 x 50 mm, 8 μm	1 2	 Carbonic anhydrase <i>a</i>-Lactalbumin <i>β</i>-Lactoglobulin B <i>β</i>-Lactoglobulin A
Mobile phase:	A: 20 mM tris HCI, pH 7 B: A + 500 mM sodium acetate, pH 7		
Flow rate:	1.0 mL/min		
Gradient:	Linear 0-50% B in 10 min		
Detector:	UV, 280 nm		


0

18

min

Reliable separations of synthetic oligonucelotides high resolution separation of a poly-t-oligonucleotide size standard spiked with 10-mer, 15-mer, 30-mer, and 50-mer (main peaks)

Column:	PL-SAX 1000 Å PL1551-1802 4.6 x 50 mm, 8 μm	2000
Mobile phase:	A: 7:93 v/v ACN: 100 mM TEAA, pH 8.5 B: 7:93 v/v ACN: 100 mM TEAA, 1 M ammonium chloride, pH 8.5	
Gradient:	0–40% B in 10 min, followed by 40–70% B in 14 min and 70–100% B in 25 min	
Flow rate:	1.0 mL/min	
Temperature:	60 °C	(
Detector:	UV, 220 nm	

High-resolution separation of poly-t-oligonucleotide. With the gradient used here, baseline separation of the n-1 from n was easily obtained up to the 15-mer.

PL-SAX Strong Anion-Exchange Columns

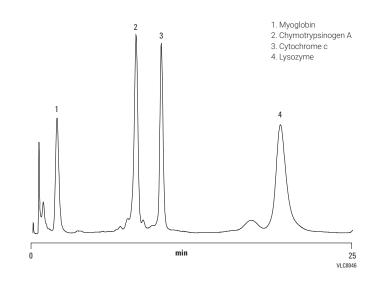
Size (mm)	Particle Size (µm)	Pressure Limit	PL-SAX 1000 Å	PL-SAX 4000 Å
100 x 300	10	207 bar, 3000 psi	PL1851-2102	PL1851-2103
50 x 150	30	207 bar, 3000 psi	PL1751-3702	PL1751-3703
50 x 150	10	207 bar, 3000 psi	PL1751-3102	PL1751-3103
25 x 150	30	207 bar, 3000 psi	PL1251-3702	PL1251-3703
25 x 150	10	275 bar, 4000 psi	PL1251-3102	PL1251-3103
25 x 50	10	207 bar, 3000 psi	PL1251-1102	PL1251-3103
4.6 x 250	30	207 bar, 3000 psi	PL1551-5702	PL1551-5703
4.6 x 150	30	207 bar, 3000 psi	PL1551-3702	PL1551-3703
4.6 x 250	10	207 bar, 3000 psi	PL1551-5102	PL1551-5103
4.6 x 150	10	207 bar, 3000 psi	PL1551-3102	PL1551-3103
4.6 x 150	8	207 bar, 3000 psi	PL1551-3802	PL1551-3803
4.6 x 50	8	207 bar, 3000 psi	PL1551-1802	PL1551-1803
4.6 x 50	5	207 bar, 3000 psi	PL1551-1502	PL1551-1503
2.1 x 150	8	207 bar, 3000 psi	PL1951-3802	PL1951-3803
2.1 x 50	8	207 bar, 3000 psi	PL1951-1802	PL1951-1803
2.1 x 50	5	207 bar, 3000 psi	PL1951-1502	PL1951-1503
1.0 x 50	5	207 bar, 3000 psi	PL1351-1502	PL1351-1503

PL-SAX Strong Anion-Exchange Bulk Media

Size (mm)	Particle Size (µm)	Pressure Limit	PL-SAX 1000 Å	PL-SAX 4000 Å
100 g	30	207 bar, 3000 psi	PL1451-4702	PL1451-4703
100 g	10	207 bar, 3000 psi	PL1451-4102	PL1451-4103

PL-SCX Strong Cation-Exchange columns

- Optimal design for effective separation of biomolecules
- Pore sizes allow use of a range of solute sizes
- Exceptional stability for long column lifetime


PL-SCX -SO₃ is a macroporous PS/DVB matrix with a very hydrophilic coating and strong cation-exchange functionality. This process is controlled to provide the optimum density of strong cation-exchange moieties for the analysis, separation, and purification of a wide range of biomolecules, from small peptides to large proteins. Two pore sizes are available, 1000 Å and 4000 Å, to provide good mass-transfer characteristics for a range of solute sizes. The 5 μ m media deliver separations at higher resolution with the 30 μ m media used for medium pressure liquid chromatography.

Column Specificatio	ns				
Bonded Phase	id (mm)	Particle Size (µm)	Pore Size	pH Stability	Operating Temperature Limit
Strong cation-exchange	2.1, 4.6, 7.5, 25, 50, and 100	5, 8, 10, and 30	1000 Å and 4000 Å	1-14	80 °C

Standard protein separation

Column:	PL-SCX 1000 Å PL1545-1502 4.6 x 50 mm, 5 μm
Mobile phase:	A: 20 mM potassium dihydrogen phosphate, pH 6.0 B: A + 1 M sodium chloride
Gradient:	0-100% B in 20 min
Flow rate:	1.0 mL/min
Detector:	UV, 280 nm

PL-SCX Strong Cation-Exchange Columns

Particle Size (µm)	Pressure Limit	PL-SCX 1000 Å	PL-SCX 4000 Å
10	207 bar, 3000 psi	PL1845-2102	PL1845-2103
30	207 bar, 3000 psi	PL1745-3703	PL1745-3703
10	207 bar, 3000 psi	PL1745-3102	PL1745-3103
30	207 bar, 3000 psi	PL1245-3702	PL1245-3703
10	207 bar, 3000 psi	PL1245-3102	PL1245-3103
10	207 bar, 3000 psi	PL1245-1102	PL1245-1103
30	207 bar, 3000 psi	PL1545-5703	PL1545-5703
30	207 bar, 3000 psi	PL1545-3702	PL1545-3703
10	207 bar, 3000 psi	PL1545-5102	PL1545-5103
10	207 bar, 3000 psi	PL1545-3102	PL1545-3103
8	207 bar, 3000 psi	PL1545-3802	PL1545-3803
8	207 bar, 3000 psi	PL1545-1802	PL1545-1803
5	207 bar, 3000 psi	PL1545-1502	PL1545-1503
8	207 bar, 3000 psi	PL1945-3802	PL1945-3803
8	207 bar, 3000 psi	PL1945-1802	PL1945-1803
5	207 bar, 3000 psi	PL1945-1502	PL1945-1503
5	207 bar, 3000 psi	PL1345-1502	PL1345-1503
	10 30 10 30 10 30 10 30 10 30 10 30 <td>10 207 bar, 3000 psi 30 207 bar, 3000 psi 10 207 bar, 3000 psi 10 207 bar, 3000 psi 30 207 bar, 3000 psi 10 207 bar, 3000 psi 30 207 bar, 3000 psi 8 207 bar, 3000 psi 5 207 bar, 3000 psi 5 207 bar, 3000 psi</td> <td>1000 Å 10 207 bar, 3000 psi PL1845-2102 30 207 bar, 3000 psi PL1745-3703 10 207 bar, 3000 psi PL1745-3702 10 207 bar, 3000 psi PL1745-3702 30 207 bar, 3000 psi PL1245-3702 10 207 bar, 3000 psi PL1245-3702 10 207 bar, 3000 psi PL1245-3102 10 207 bar, 3000 psi PL1245-1102 30 207 bar, 3000 psi PL1545-5703 30 207 bar, 3000 psi PL1545-5703 30 207 bar, 3000 psi PL1545-5702 10 207 bar, 3000 psi PL1545-5102 10 207 bar, 3000 psi PL1545-3102 8 207 bar, 3000 psi PL1545-3802 8 207 bar, 3000 psi PL1545-1802 5 207 bar, 3000 psi PL1545-3802 8 207 bar, 3000 psi PL1945-3802 8 207 bar, 3000 psi PL1945-3802 8 207 bar, 3000 psi PL1945-1802 8 207 bar, 3</td>	10 207 bar, 3000 psi 30 207 bar, 3000 psi 10 207 bar, 3000 psi 10 207 bar, 3000 psi 30 207 bar, 3000 psi 10 207 bar, 3000 psi 30 207 bar, 3000 psi 8 207 bar, 3000 psi 5 207 bar, 3000 psi 5 207 bar, 3000 psi	1000 Å 10 207 bar, 3000 psi PL1845-2102 30 207 bar, 3000 psi PL1745-3703 10 207 bar, 3000 psi PL1745-3702 10 207 bar, 3000 psi PL1745-3702 30 207 bar, 3000 psi PL1245-3702 10 207 bar, 3000 psi PL1245-3702 10 207 bar, 3000 psi PL1245-3102 10 207 bar, 3000 psi PL1245-1102 30 207 bar, 3000 psi PL1545-5703 30 207 bar, 3000 psi PL1545-5703 30 207 bar, 3000 psi PL1545-5702 10 207 bar, 3000 psi PL1545-5102 10 207 bar, 3000 psi PL1545-3102 8 207 bar, 3000 psi PL1545-3802 8 207 bar, 3000 psi PL1545-1802 5 207 bar, 3000 psi PL1545-3802 8 207 bar, 3000 psi PL1945-3802 8 207 bar, 3000 psi PL1945-3802 8 207 bar, 3000 psi PL1945-1802 8 207 bar, 3

PL-SCX Strong Cation-Exchange Bulk Media

Size (mm)	Particle Size (µm)	PL-SCX 1000 Å	PL-SCX 4000 Å
100 g	30	PL1445-4702	PL1445-4703
100 g	10	PL1445-4102	PL1445-4102

Tips and tools

PL-SAX and PL-SCX columns and bulk media are also available for prep to process.

Turn to **Pages 190–195**.

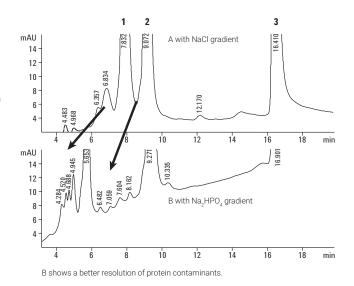
Bio-Monolith Ion-Exchange HPLC columns

- Polymer-based, monolith HPLC columns designed for macro biomolecule separations
- Flow-rate independent separations; no diffusion, no pores, and no void volume make transport between mobile and stationary phase very rapid
- Monolith disk is 5.2 x 4.95 mm (100 μL column volume) with continuous channels, eliminating diffusion mass transfer
- Extremely fast separations speed up method development time and decrease costs; locking in method parameters takes significantly less time and buffer

Bio-Monolith Ion-Exchange HPLC columns provide high resolution and rapid separations of antibodies (IgG, IgM), plasmid DNA, viruses, phages, and other macro biomolecules. The product family offers strong cation-exchange, strong and weak anion-exchange, and Protein A phases. Bio-Monolith HPLC columns are compatible with InfinityLab LC series.

Bio-Monolith Ion-Exchange HPLC column

Bio-Monolith HPLC Column Selection Guide


Column	Description	Key Applications	Part No.
Bio-Monolith QA	The quaternary amine bonded phase (strong anion- exchange) is fully charged over a working pH range of 2–13, binding negatively charged biomolecules.	 Adenovirus process monitoring and quality control IgM purification monitoring and quality control Monitoring DNA impurity removal Monitoring endotoxin removal HSA purity 	5069-3635
Bio-Monolith DEAE	The diethylaminoethyl bonded phase (weak anion- exchange) offers increased selectivity of biomolecules with negative charge over a working pH range of 3–9.	 Process monitoring and quality control of bacteriophage manufacturing and purification Process monitoring and quality control of plasmid DNA purification 	5069-3636
Bio-Monolith SO ₃	The sulfonyl bonded phase (strong cation-exchange) is fully charged over a working pH range of 2–13, binding positively charged biomolecules.	 Fast and high resolution analytical separations of large molecules such as proteins and antibodies Hemoglobin A1c fast analytics 	5069-3637

Column Specifications	
Dimensions	5.2 mm x 4.95 mm
Column volume	100 µL
Maximum pressure	150 bar (15 MPa, 2,200 psi)
Temperature min/max	Operating: 2–40 °C

•	
Temperature min/max	Operating: 2-40 °C
	Storage: 2–8 °C
Recommended pH	Operating range: 2–13
	Cleaning-in-place: 1–14
Materials of construction	Hardware: stainless steel
	Packing: poly(glycidyl methacrylate-co-ethylene dimethacrylate) highly porous monolith
Color ring identifier	Bio-Monolith QA: blue
	Bio-Monolith DEAE: green
	Bio-Monolith SO ₃ : red
Shelf life/expiration date	SO ₃ , QA, DEAE: 24–36 months

Baseline expansion of a separation of protein standards

Column:	Bio-Monolith CM15, 5.5 x 15 mm
Mobile phase:	A: 10 mM sodium hydrogen phosphate, pH 6.0 B: A + 500 mM sodium chloride or just 500 mM sodium hydrogen phosphate, pH 6.0
Flow rate:	2 mL/min
Gradient:	0.5 min hold with mobile phase A followed by a linear gradient to 45% B in 15 min (elapsed time 15.5 min), then 60% B at 15.6 min continued to 20 min. Column flushed with 100% B for 15 min before re-equilibration for the next run.
	pH gradient: A: 5 mM sodium hydrogen phosphate, buffer, pH 5.5 and B: 40 mM sodium hydrogen phosphate (not buffered, pH 8.9). 2% B/min at 1 mL/min for 15 min, followed by a column wash with 90% B for 5 min.
Detector:	UV, 220 nm
Sample:	One mg each/mL in mobile phase A 1. RNAse from bovine pancreas (pl 9.6) 2. Cytochrome c from bovine heart (pl 10.37-10.8) 3. Lysozyme from chicken egg (pl 11.35) (0.5 mg)
Instrument:	1200 Infinity series with diode array detector

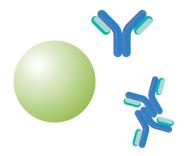
Column: **Bio-Monolith DEAE** 5069-3636 50. _ 120 5.2 x 4.95 mm _ _ Time: 36 min 45-A: 125 mM sodium phosphate buffer, pH 7.0 Mobile phase: Time: 158 min 2 100 40-B: 125 mM sodium phosphate buffer + 1 M sodium chloride, Time: 191 min pH 7.0 ---- % buffer B Relative Absorbance (mAU) 35-80 30-Flow rate: 1 mL/min % Gradient 25-100% buffer A (2.5 min) Gradient: 0-100% buffer B (10 min) 20-Phages and other components 100% buffer A (2 min) 40 15 UV, 280 nm Detector: 10 -20 Instrument: High pressure gradient HPLC system, Agilent 1200 Infinity series 5 0 -0 12 2 0 6 8 10 4

Monitor phage production during fermentation

As phage proliferation progresses, the genomic DNA (gDNA) concentration increases as the host cells are lysed. In the late stages of fermentation, gDNA begins to degrade into fragments. These gDNA fragments cannot be easily removed by purification media, and so it is critical to stop the fermentation cycle before the degradation of the gDNA. The chromatogram above represents three samples taken from the bioreactor at 36, 158, and 191 minutes. Peak 1 represents phage, media, and host cells, peak 2 the intact gDNA, and peak 3 the fragmented gDNA.

min

Aggregation and Fragment Analysis


Accurately determine biomolecule aggregation, fragmentation, and chemical ligation/modification

Size exclusion chromatography (SEC) is a technique for separating proteins, oligonucleotides, and other complex biopolymers by size, using aqueous eluents. In particular, it is an essential tool for quantification of aggregates present in protein biotherapeutics. Manufacture of a biopharmaceutical, such as a monoclonal antibody, is a complex process and aggregation of the protein is an issue that can arise during cell culture, isolation, purification, and formulation. The presence of dimers and higher aggregates can affect both efficacy and safety of the final product; quantification of aggregate content must be carried out during process development to establish the product's critical quality attributes (CQA) as well as during final product characterization to ensure the extent of aggregation is minimized and controlled at safe levels.

Applying SEC to aggregation studies

The size, type, and content of aggregates present in protein biopharmaceuticals can affect both efficacy and formulation—or worse, induce an immunogenic response. Aggregate formation occurs through a variety of mechanisms, including disulfide bond formation and noncovalent interactions.

Because the size of protein aggregates, including dimers, is sufficiently different from the protein monomer, you can separate the various forms using SEC. In fact, SEC with UV or light scattering is a standard technique for quantifying protein aggregation.

Applying SEC to quantitation and molecular weight determination

For proteins and other molecules of discrete molecular weight, SEC can be used to detect and quantitate monomers, dimers, aggregates, and fragments. SEC can also separate oligonucleotide mixtures.

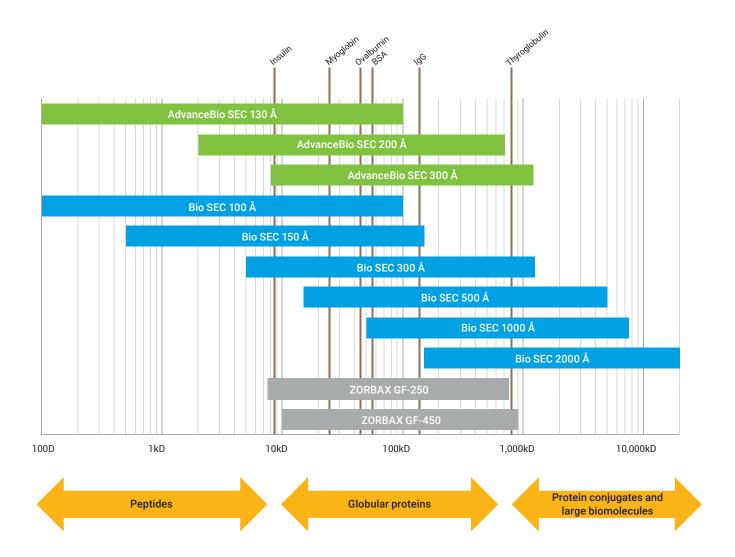
For biopolymers containing varying chain lengths, such as starches and other polysaccharides, SEC can provide data on molecular weight distribution and branching (with the proper detectors)

As a leading manufacturer of SEC columns and instruments for over 30 years, Agilent is continually developing new SEC products that will provide even higher resolution and quicker separations. This section highlights Agilent's broad family of SEC columns for protein biopolymer analysis:

- AdvanceBio SEC is available in two particle sizes for SEC-UV or SEC-LS measurements. The 2.7 μm particles are available in 130 Å or 300 Å pore sizes to cover a wide variety of sample sizes. The 1.9 μm particles have a 200 Å pore and offer the highest resolution. Both particles have a hydrophilic polymer coating, resulting in minimal secondary interactions. This makes them robust for challenging samples like ADCs, as well as for routine analysis.
- Bio SEC-3 and Bio SEC-5 columns are available in a variety of pore sizes, and are well suited for protein analysis with UV or MS detection—especially when determining the presence of dimers and aggregates in therapeutic biologicals. Note that 3 µm Bio SEC-3 columns provide higher resolution than our industry-standard 5 µm Bio SEC-5 columns.
- ProSEC 300S columns work well with globular proteins under high salt conditions.
- ZORBAX GF-250 and GF-450 columns are legacy products that should be employed where protocols still require use of USP designation L35. Alternatively, we recommend using Bio SEC columns for improved performance.
- PL aquagel-OH columns can be used to analyze biopolymers of broad molecular weights, such as PEGs, oligo—and polysaccharides, starches, and gums. Please see aqueous and polar GPC/SEC columns product guide (publication 5990-7995EN).

Size Exclusion Chromatography (SEC)

Agilent Columns	Notes	USP Designation
AdvanceBio SEC	Robust hydrophilic polymer coating yielding minimal secondary interactions; 2.7 µm particles with 130 Å or 300 Å, or 1.9 µm particles with 200 Å pore size for highest resolution.	L59
Bio SEC-3	Higher resolution and faster separation from 3 µm particles, with 100 Å, 150 Å, and 300 Å pore sizes.	L59
Bio SEC-5	More pore size options (100 Å, 150 Å, 300 Å, 500 Å, 1000 Å, and 2000 Å) to cover a wider range of analytes.	L59
ProSEC 300S	Single column option for protein analysis in high salt conditions.	L33
ZORBAX GF-250/450	Legacy products that should be employed where protocols still require use of USP designation L35.	L35
	AdvanceBio SEC Bio SEC-3 Bio SEC-5 ProSEC 300S	AdvanceBio SEC Robust hydrophilic polymer coating yielding minimal secondary interactions; 2.7 µm particles with 130 Å or 300 Å, or 1.9 µm particles with 200 Å pore size for highest resolution. Bio SEC-3 Higher resolution and faster separation from 3 µm particles, with 100 Å, 150 Å, and 300 Å pore sizes. Bio SEC-5 More pore size options (100 Å, 150 Å, 300 Å, 500 Å, 1000 Å, and 2000 Å) to cover a wider range of analytes. ProSEC 300S Single column option for protein analysis in high salt conditions. ZORBAX GF-250/450 Legacy products that should be employed where protocols still require


Tips and tools

Use Agilent solvent filters to remove particles from self-prepared buffers and mobile phases.

 $\label{eq:Visit:www.agilent.com/chem/solvent-filters-degassers} \\$

Which SEC column is right for your application?

Agilent has a wide selection of SEC columns that give you the choices you need to perfect separations based on your analytes and method parameters. This chart offers an overview of the pore size ranges that yield the best results for common molecule types. We recommend that you begin your method development with AdvanceBio SEC columns.

AdvanceBio SEC

AdvanceBio SEC columns deliver accurate, precise quantitation for mAb aggregation and protein analysis. These innovative size exclusion chromatography columns were designed and engineered by Agilent to improve lab productivity by providing robust, reliable methods that eliminate sample reanalysis. Consistent results are achieved from column to column, batch to batch, and lab to lab, ensuring that methods can be transferred across departments and locations to put an end to uncertainty.

- Increased analytical speed to help you meet vital deadlines
- Increased resolution for more accurate quantitation
- Increased sensitivity to quantitate aggregates, even at low levels
- Increased reproducibility to eliminate rework
- Uniquely designed standards for AdvanceBio SEC columns, providing optimal calibration and performance verification

Column Specifications

Pore Size	Particle Size	Mol Wt Range	pH Range	Max Pressure	Flow Rate
130 Å	2.7 µm	100-120,000	2-8.5	400 bar (typical operating	0.1-2.0 mL/min (7.8 mm id)
				pressure < 200 bar)	0.1–0.7 mL/min (4.6 mm id)
300 Å	2.7 µm	5,000-1,250,000	2-8.5	400 bar (typical operating	0.1-2.0 mL/min (7.8 mm id)
				pressure < 200 bar)	0.1–0.7 mL/min (4.6 mm id)
200 Å	1.9 µm	2,000-700,000	2-8	620 bar	0.1– 0.7 mL/min (4.6 x 150 mm)
					0.1– 0.5 mL/min (4.6 x 300 mm)

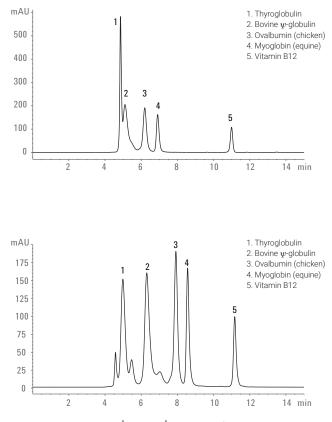
AdvanceBio SEC, 2.7 µm

Description	130 Å	300 Å
Analytical Columns		
4.6 x 300 mm, 2.7 µm	PL1580-5350	PL1580-5301
4.6 x 150 mm, 2.7 μm	PL1580-3350	PL1580-3301
7.8 x 300 mm, 2.7 µm	PL1180-5350	PL1180-5301
7.8 x 150 mm, 2.7 μm	PL1180-3350	PL1180-3350
Analytical Guards		
4.6 x 50 mm, 2.7 μm	PL1580-1350	PL1580-1301
7.8 x 50 mm, 2.7 μm	PL1180-1350	PL1180-1301

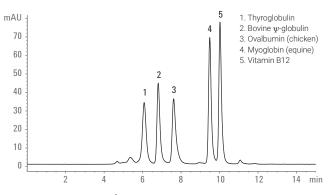
AdvanceBio SEC, 1.9 µm

Description	200 Å		
Analytical Columns			
4.6 x 300 mm, 1.9 μm	PL1580-5201		
4.6 x 150 mm, 1.9 μm	PL1580-3201		
Guard Column			
4.6 x 30 mm, 1.9 μm	PL1580-1201		

Real stories from the lab

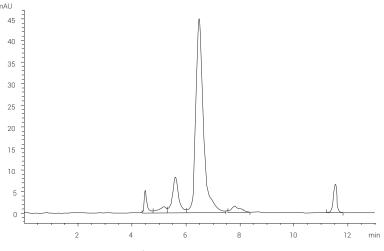

Reducing complexity drives better lab economics

Learn how the CrossLab team helped a large pharma lab manage different types of instruments, from different manufacturers.


www.agilent.com/chem/story92

SEC molecular weight standard separations

Column:	AdvanceBio SEC 7.8 x 300 mm
Sample:	BioRad Gel Filtration standard #1511901
Mobile phase:	A: 150mM sodium phosphate, pH 7.0

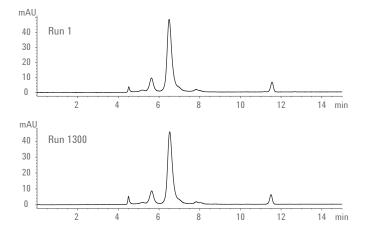

AdvanceBio SEC 300 Å and 130 Å separation of the BioRad Gel Filtration mix. The 300 Å provides increase resolution.

AdvanceBio SEC 130 Å separation of protein and peptide mix showing the resolution of small peptides and proteins.

AdvanceBio SEC recommended starting conditions

Column:	AdvanceBio SEC 300 Å, 2.7 μm 7.8 x 300 mm (p/n PL1180-5301)	mAU 45 40
Flow rate:	1 mL/min	40
Mobile phase:	150mM phosphate buffer, pH 7.0	35
Wavelength:	220 nm	30
Temperature:	ambient	25
Injection volume:	5 µL	20
Sample:	lgG	15

High-resolution separation of an IgG sample, showing the monomer, aggregates, and degradation products.

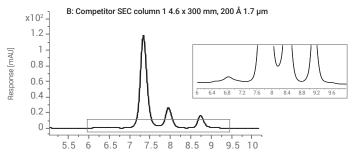

AdvanceBio SEC 2.7 µm 0	perating Parameters
Mobile phase compatibility	150 mM phosphate buffer, pH 7.0 (recommended starting conditions) Other aqueous buffers with high and low salt can be used. Mixtures of water and acetonitrile can be used. (Check solubility of buffer components and system pressure.)
pH stability	2 to 8.5
Operating temperature	20–30 °C (recommended) 80 °C (maximum)
Typical operating pressure	< 200 bar (2,900 psi) (single column)
Maximum pressure	400 bar (5,800 psi)
Working flow rate	0.1 to 2.0 mL/min for 7.8 mm i.d. columns (recommended) 0.1 to 0.7 mL/min for 4.6 mm i.d. columns (recommended) For two columns in series, lower flow rates may be necessary to ensure maximum pressure does not exceed 400 bar (5,800 psi).

Note: Working at extremes of the operating parameters is likely to reduce column lifetime.

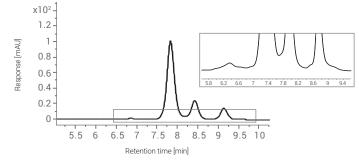
Column:	AdvanceBio SEC 300 Å 7.8 x 300 mm
Mobile phase:	150 mM sodium phosphate, pH 7.0
Sample:	lgG

Plot showing the resolution between IgG monomer and dimer over a 1300 injection sequence.

The profile of an IgG sample did not change–even after 1300 injections. Resolution factors and quantitation of the IgG monomer and dimer also remained within working range throughout the column lifetime.


AdvanceBio SEC, 1.9 µm

Instrument:	1260 Infinity II bio-inert LC system
Software:	Agilent OpenLab CDS
Flow rate:	0.35 mL/min
Eluent:	50 mM sodium phosphate, 200 mM NaCl, pH 7.0
Temperature:	25 °C
Injection volume:	1 μL
Detection:	UV, 220 nm


The 1.9 µm silica particles modified by unique Agilent hydrophilic bonding chemistry ensure high resolution and separation efficiency. In addition, they minimize secondary interactions with mAbs, ADCs, and other proteins.

AdvanceBio SEC columns demonstrate better resolution and separation efficiency, compared to competitive columns.

A: Agilent AdvanceBio SEC 4.6 x 300 mm, 200 Å 1.9 µm x10² 1.2 monomer 1 Response [mAU] 0.8 0.6 64 6.8 7.2 7.6 8 8.4 8.8 9.2 0.4 LMW1 LMW2 dimer 0.2 0 7.5 8.5 6.5 9.5 10 5.5 6 7 8 9

C: Competitor SEC column 2 4.6 x 300 mm, 250 Å 2.0 µm

Size exclusion chromatograms of SigmaMAb mixed with LMW1 and LMW2 fragments.

	Peak Width 50%		Resolution			
	Monomer	LMW1	LMW2	Dimer/Monomer	Monomer/LMW1	Back Pressure (bar)
Agilent Advance Bio SEC 1.9 µm	0.159	0.154	0.148	2.79	2.28	340
Competitor SEC column 1	0.172	0.166	0.160	2.46	2.09	354
Competitor SEC column 2	0.194	0.182	0.169	2.49	1.83	260

AdvanceBio SEC standards

130 Å AdvanceBio SEC protein standards

A protein mix consisting of 5 carefully selected proteins (Ovalbumin, Myoglobin, Aprotinin, Neurotensin, Angiotensin II) designed to calibrate Agilent's 130 Å AdvanceBio size exclusion columns. This standard can be used regularly to calibrate the column and ensure ideal system performance in various applications involving protein purification and analysis.

300 Å AdvanceBio SEC protein standards

A protein mix consisting of 5 carefully selected proteins (Thyroglobulin, g-globulin, Ovalbumin, Myoglobin, Angiotensin II) designed to calibrate Agilent's 300 Å AdvanceBio size exclusion columns. This standard can be used regularly to calibrate the column and ensure ideal system performance in various applications involving protein purification and analysis.

AdvanceBio SEC Standards

Description	Size	Part No.
130 Å	1.5 mL vial	5190-9416
300 Å	1.5 mL vial	5190-9417

AdvanceBio SEC protein standards, p/n 5190-9416 and p/n 5190-9417

Bio SEC-3

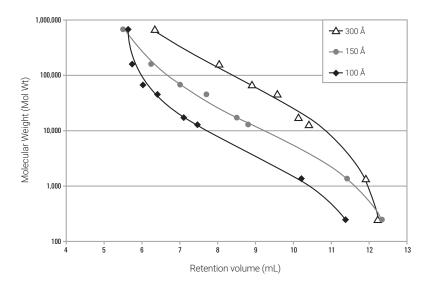
Higher resolution for faster peptide and protein separations

Bio SEC-3 columns offer speed and resolution advantages over other SEC columns, thanks to their small, efficient particles.

- Faster separations than large-particle SEC columns
- High resolution: sharper peaks and better protein recovery
- Exceptional loading capacity and recovery due to proprietary hydrophilic layer
- Flexible method development: compatible with most aqueous buffers
- Excellent stability under both high- and low-salt conditions
- Reliable, consistent performance: narrowly dispersed particles; proprietary hydrophilic layer provides for minimal secondary interactions
- Robust particles compatible with multi-detectors including light scattering
- MS-compatible

Bio SEC-3 columns help you achieve more consistent SEC separations. Each column is packed with spherical, narrowly dispersed 3 µm silica particles coated with a proprietary hydrophilic layer for high recovery and minimal secondary interactions, which provides more consistent separations. This thin polymeric layer is chemically bonded to pure, mechanically stable silica under controlled conditions, ensuring a highly efficient and stable size exclusion particle.

Tips and tools

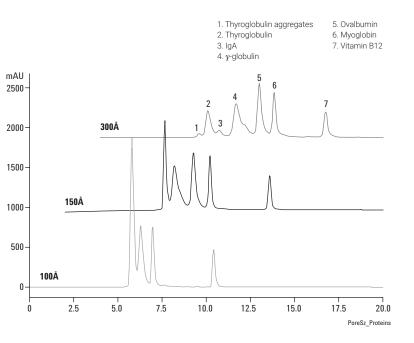

Deactivated/silanized vials have inert surfaces that will not interact with metals, biologicals or proteins, and will not cause pH shifts. Avoid standard polypropylene vials for biological or light-sensitive compounds.

Column Spe	ecifications				
Pore Size	Particle Size	Mol Wt Range	pH Range	Max Pressure	Flow Rate
100 Å	3 µm	100-100,000	2-8.5	137 bar, 2000 psi	1.0–10.0 mL/min (21.2 mm id)
					0.2–1.2 mL/min (7.8 mm id)
					0.1–0.4 mL/min (4.6 mm id)
150 Å	3 µm	500-150,000	2-8.5	137 bar, 2000 psi	1.0–10.0 mL/min (21.2 mm id)
					0.2–1.2 mL/min (7.8 mm id)
					0.1–0.4 mL/min (4.6 mm id)
300 Å	3 µm	5,000-1,250,000	2-8.5	137 bar, 2000 psi	1.0–10.0 mL/min (21.2 mm id)
				0.2–1.2 mL/min (7.8 mm id)	
					0.1–0.4 mL/min (4.6 mm id)

Calibration curves-Bio SEC-3

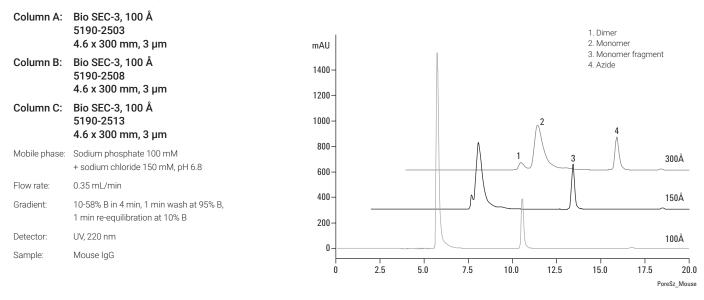
Column:	Bio SEC-3 7.8 x 300 mm, 3 µm
Mobile phase:	Sodium phosphate 150 mM, pH 7.0
Flow rate:	1.0 mL/min
Detector:	UV

		Pore Size			
Proteins	Mol Wt	300 Å	150 Å	100 Å	-
Thyroglobulin	670,000	6.34	5.50	5.63	-
γ-Globulin	150,000	8.03	6.24	5.74	
BSA	67,000	8.90	7.00	6.03	
Ovalbumin	45,000	9.57	7.70	6.41	
Myoglobin	17,000	10.12	8.50	7.10	
Ribonuclease A	12,700	10.40	8.80	7.46	
Vitamin B12	1,350	11.90	11.40	10.20	



Pore size choice

The choice of media pore size will influence the resolution in SEC. As the separation is based on differences in molecular size in solution, the sample must be able to permeate the porous structure of the particles. If the pore size is too small, the samples will be excluded from the pores and elute in the void volume of the column, and if too large, then all will be able to fully permeate the particles and so there will be very little separation.


Pore size choice: proteins

Column A:	Bio SEC-3, 100 Å 5190-2503 4.6 x 300 mm, 3 μm
Column B:	Bio SEC-3, 100 Å 5190-2508 4.6 x 300 mm, 3 μm
Column C:	Bio SEC-3, 100 Å 5190-2513 4.6 x 300 mm, 3 μm
Mobile phase:	Sodium phosphate 100 mM + sodium chloride 150 mM, pH 6.8
Flow rate:	0.35 mL/min
Gradient:	10–58% B in 4 min, 1 min wash at 95% B, 1 min re-equilibration at 10% B
Detector:	UV, 220 nm
Sample:	Bio-Rad gel filtration standards mix

Aggregation and Fragment Analysis

Pore size choice: mouse IgG

Bio SEC-3

Size (mm)	Particle Size (µm)	Bio SEC-3 100 Å USP L59	Bio SEC-3 150 Å USP L59	Bio SEC-3 300 Å USP L59	
21.2 x 300	3	5190-6850	5190-6851	5190-6852	
21.2 x 50, guard	3	5190-6854	5190-6855	5190-6856	
7.8 x 300	3	5190-2501	5190-2506	5190-2511	
7.8 x 150	3	5190-2502	5190-2507	5190-2512	
7.8 x 50, guard	3	5190-2505	5190-2510	5190-2515	
4.6 x 300	3	5190-2503	5190-2508	5190-2513	
4.6 x 150	3	5190-2504	5190-2509	5190-2514	
4.6 x 50, guard	3	5190-6846	5190-6847	5190-6848	

Tips and tools

To further understand molecular weight determination and aggregation analysis using the 1260 Infinity Multi-detector Bio-SEC Solution along with BioSEC-3 columns, see:

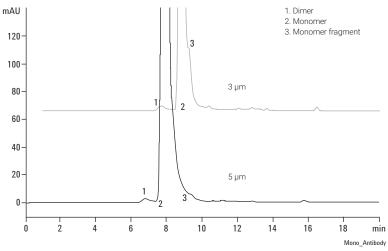
Detailed Aggregation Characterization of Monoclonal Antibodies Using the Agilent 1260 Infinity Multi-Detector Bio-SEC Solution with Advanced Light Scattering Detection (publication 5991-3954EN), and Determination of Protein Molecular Weight and Size Using the Agilent 1260 Infinity Multi-Detector Bio-SEC Solution with Advanced Light Scattering Detection (publication **5991-3955EN**)

www.agilent.com/search

Bio SEC-5

- Exceptional resolution for large molecules
- High stability and efficiency due to a proprietary neutral hydrophilic layer
- Improved peak capacity and resolution due to specially designed packing that increases pore volume
- Rugged performance: outstanding reproducibility and column lifetime
- Excellent stability, even under high-pH, high-salt, and low-salt conditions
- Flexible method development: compatible with most aqueous buffers
- Broad applicability: up to 2000 Å pore size for vaccines and high molecular weight biomolecules
- MS-compatible

For large biomolecules and samples with components of multiple molecular weights, Bio SEC-5 columns are an ideal choice. They are packed with 5 μ m silica particles coated with a proprietary, neutral, hydrophilic layer for maximum efficiency and stability, with six different pore sizes to provide optimum resolution over the molecular weight range.


Column Specifications

Pore Size	Particle Size	Mol Wt Range	pH Range	Max Pressure	Flow Rate
100 Å	5 µm	100-100,000	2-8.5	137 bar, 2000 psi	1.0–10.0 mL/min (21.2 mm id)
					0.2–1.2 mL/min (7.8 mm id)
					0.1–0.4 mL/min (4.6 mm id)
150 Å	5μm	500-150,000	2-8.5	137 bar, 2000 psi	1.0–10.0 mL/min (21.2 mm id)
					0.2–1.2 mL/min (7.8 mm id)
					0.1–0.4 mL/min (4.6 mm id)
300 Å	5 µm	5,000-1,250,000	2-8.5	137 bar, 2000 psi	1.0–10.0 mL/min (21.2 mm id)
					0.2–1.2 mL/min (7.8 mm id)
					0.1–0.4 mL/min (4.6 mm id)
500 Å	5 µm	15,000-5,000,000	2-8.5	137 bar, 2000 psi	1.0–10.0 mL/min (21.2 mm id)
					0.2–1.2 mL/min (7.8 mm id)
					0.1–0.4 mL/min (4.6 mm id)
1000 Å	5 µm	50,000-7,500,000	2-8.5	137 bar, 2000 psi	1.0–10.0 mL/min (21.2 mm id)
					0.2–1.2 mL/min (7.8 mm id)
					0.1–0.4 mL/min (4.6 mm id)
2000 Å	5 µm	>10,000,000	2-8.5	137 bar, 2000 psi	1.0–10.0 mL/min (21.2 mm id)
					0.2–1.2 mL/min (7.8 mm id)
					0.1–0.4 mL/min (4.6 mm id)

Comparing Bio SEC-3 and Bio SEC-5

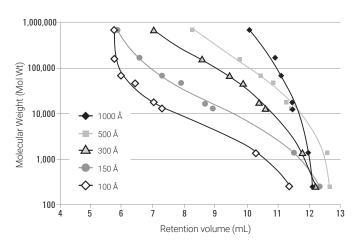
Analysis of	Analysis of monoclonal antibody				
Column:	Bio SEC-3, 300 Å 5190-2511 7.8 x 300 mm, 3 μm				
Column:	Bio SEC-5, 300 Å 5190-2526 7.8 x 300 mm, 5 μm				
Mobile phase:	Sodium phosphate 150 mM, pH 7.0				
Flow rate:	1 mL/min				
Detector:	UV, 220 nm				
Sample:	Humanized monoclonal antibody				

The 3 μm column gives higher definition of the fragmentation plan.

Tips and tools

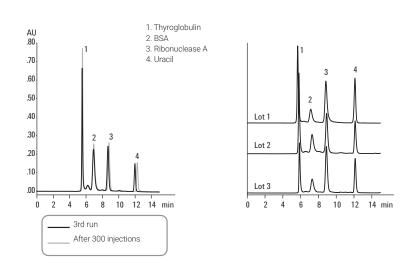
There are many things to consider when developing aggregation analysis for your proteins; the effect of solute size and molecular weight, column selection choices, important mobile phase considerations, and more. For a guide on all of the above, see:

Size exclusion chromatography for biomolecule analysis: A "How to" guide (publication 5991-3651EN)


www.agilent.com/search

Aggregation and Fragment Analysis

Calibration curves-Bio SEC-5


Column:	Bio SEC-5 7.8 x 300 mm, 5 μm
Mobile phase:	Sodium phosphate 150 mM, pH 7.0
Flow rate:	1.0 mL/min
Detector:	UV, 214 nm

		Retention Volume				
Proteins	Mol Wt	1000 Å	500 Å	300 Å	150 Å	100 Å
Thyroglobulin	670,000	10.07	8.23	7.03	5.82	5.77
γ -Globulin	150,000	10.88	9.80	8.57	6.55	5.79
BSA	67,000	11.13	10.44	9.44	7.29	6.00
Ovalbumin	45,000	11.28	10.83	9.89	7.90	6.40
Myoglobin	17,00 0	11.44	11.28	10.42	8.66	7.05
Ribonuclease A	12,700	11.52	11.41	10.58	8.93	7.32
Vitamin B12	1,350	12.00	12.59	11.78	11.49	10.30
Uracil (total permeation marker)	112	12.08	12.68	12.21	12.13	11.41

Exceptional lot-to-lot reproducibility

Column:	Bio SEC-5, 150 Å 5190-2521 7.8 x 300 mm, 5 μm
Mobile phase:	Sodium phosphate 150 mM, pH 7.0

The four-protein mixture shows excellent retention time reproducibility over 300 injections and on three columns from different manufacturing lots.

Aggregation and Fragment Analysis

Bio SEC-5

Size (mm)	Particle Size (µm)	Bio SEC-5 100 Å USP L59	Bio SEC-5 150 Å USP L59	Bio SEC-5 300 Å USP L59	Bio SEC-5 500 Å USP L59	Bio SEC-5 1000 Å USP L59	Bio SEC-5 2000 Å USP L59
21.2 x 300	5	5190-6863	5190-6864	5190-6865	5190-6866	5190-6867	5190-6868
21.2 x 50, guard	5	5190-6869	5190-6870	5190-6871	5190-6872	5190-6873	5190-6874
7.8 x 300	5	5190-2516	5190-2521	5190-2526	5190-2531	5190-2536	5190-2541
7.8 x 150	5	5190-2517	5190-2522	5190-2527	5190-2532	5190-2537	5190-2542
7.8 x 50, guard	5	5190-2520	5190-2525	5190-2530	5190-2535	5190-2540	5190-2545
4.6 x 300	5	5190-2518	5190-2523	5190-2528	5190-2533	5190-2538	5190-2543
4.6 x 150	5	5190-2519	5190-2524	5190-2529	5190-2534	5190-2539	5190-2544
4.6 x 50, guard	5	5190-6857	5190-6858	5190-6859	5190-6860	5190-6861	5190-6862

Tips and tools

Update your SEC technology to AdvanceBio SEC 300 Å for higher resolution and fewer secondary interactions.

See Page 110 for more information.

ProSEC 300S

- Stable performance: mechanically robust silica particles that do not bleed during use
- Easy method development: extended linear resolving range eliminates the need for pore size selection—a single column to analyze most globular proteins
- Choices to help you perfect your separation: two column ids to suit multi-detector SEC
- Increased sensitivity when used with light-scattering detectors, to identify dimers, trimers, and aggregates

The ProSEC 300S column is specifically designed as a single column solution for globular protein analysis. The pore size selection and optimization provides an extended linear resolving range so that this single column can be used for analysis across the full range of globular proteins.

The particles are extremely robust and do not fragment during use to leach particulates. This gives exceptionally stable baselines making this column an ideal choice for use with light scattering detectors.

Two column dimensions, 7.5 mm id and 4.6 mm id, to suit multi-detector size exclusion chromatography, provide an option for the analysis of small masses.

ProSEC 300S Column Specifications

Bonded Phase	Pore Size	Particle Size	Protein Mol Wt Range	pH Range	Flow Rate	Max Pressure
ProSEC 300S	300 Å	5 µm	1,500- 800,000	2-7.5	<1.5 mL/min (7.5 mm id)	250 bar, 3700 psi
				-	<0.5 mL/min (4.6 mm id)	

ProSEC 300S

Dimensions	Particle Size (µm)	Part No.
7.5 x 600	5	PL1147-8501
7.5 x 300	5	PL1147-6501
4.6 x 250	5	PL1547-5501
Guard columns		
7.5 x 50	5	PL1147-1501
4.6 x 50	5	PL1547-1501

ZORBAX GF-250 and GF-450 gel filtration columns

- Legacy products to be used where protocols state USP designation L35
- Semiprep and prep column dimensions
- Compatible with organic modifiers and denaturants
- Wide usable pH range (3 to 8)

ZORBAX GF-250 and GF-450 size exclusion (gel filtration) columns are ideal for size separations of proteins and other biomolecules. The separation range is 4,000-900,000 for globular proteins when using GF-250 and GF-450 columns in series. The GF-250/GF-450 size exclusion columns have a hydrophilic diol bonded phase for high recovery of proteins (typically >90%) and a unique zirconia modification of the silica for a pH operating range from 3 to 8. The GF-250 and GF-450 columns are packed with precisely sized porous silica microspheres with narrow pore size and particle size distributions. The result is an efficient, rugged, and reproducible size exclusion column that can be used for both analytical and preparative separations of proteins with flow rates of up to 3 mL/min. These columns are compatible with organic modifiers (<25%) and denaturants in the mobile phase to reduce protein aggregation. Some common applications include separations of protein monomers, dimers and aggregates, desalting, protein molecular weight estimation, and separations of modified proteins.

GF-250 gel filtration columns

UHPLC Column Specifications

Bonded Phase	Pore Size	Particle Size	Mol Wt Range	Surface Area	pH Range	Flow Rate	Max Pressure
ZORBAX GF-250	150 Å	4 µm	4,000-400,000	140 m²/g	3.0-8.0	<3.0 mL/min	350 bar
ZORBAX GF-450	300 Å	6 µm	10,000-900,000	50 m²/g	3.0- 8.0	<3.0 mL/min	350 bar

Specifications represent typical values only

Description	Size (mm)	Particle Size (µm)	Part No.
GF-250, 150 Å	9.4 x 250	4	884973-901
GF-250, 150 Å	4.6 x 250	4	884973-701
GF-450, 300 Å	9.4 x 250	б	884973-902
Guard Columns (hardware required)			
GF-450 Diol, guard cartridge, 2/pk	9.4 x 15	6	820675-111
GF-250 Diol, guard cartridge, 4/pk	4.6 x 12.5	б	820950-911
GF-450 Diol, guard cartridge, 2/pk	9.4 x 15	6	820675-111
Prep guard hardware kit			840140-901
Guard hardware kit			820999-901
PrepHT Columns			
PrepHT GF-250, 150 Å	21.2 x 250	б	877974-901
PrepHT GF-450, 300 Å	21.2 x 250	6	877974-910
PrepHT endfittings, 2/pk			820400-901
PrepHT guard cartridge, 2/pk	17.0 x 7.5	5	820212-911
Guard cartridge hardware			820444-901

ZORBAX GF-250 (USP L35) and GF-450 (USP L35) Gel Filtration Columns

Tips and tools

Column user guides are excellent resources, with instructions for use and column care, as well as suggested starting methods:

www.agilent.com/chem/biolc-columns-user-guides

Glycosylation Characterization

Post-translational modifications to the primary amino acid sequence, including glycosylation, have functional consequences and can impact efficacy and immunogenicity of a biopharmaceutical. The structure of the glycan also contributes to the half-life of the protein in plasma and the ability of the monoclonal antibody to trigger the immune response required for efficacy. Regulatory authorities consider glycosylation to be one of the critical quality attributes and, therefore, it must be characterized and quantified, with acceptable ranges determined, as part of the development process for a glycoprotein innovator, biosimilar or biobetter pharmaceutical.

There are a number of analytical methods that are used to obtain information about the structure and form of protein glycosylation.

- For structural identification, including identification of glycosylation sites, mass spectrometry detection is used with reversed-phase and hydrophilic interaction chromatography (HILIC).
- The sialic acid containing glycans will also impart more charge to the protein and can be characterized by ion-exchange chromatography.

Having characterized the glycoprotein and glycopeptide fragments to obtain information about the number and position of the glycosylation sites, it is then necessary to identify and quantify the individual glycans. To do this, the glycans must be cleaved from the protein and analyzed using HILIC columns. As glycans have no chromaphore, derivatization with a fluorophore is carried out to enable FLD detection to map and quantify the glycans.

Hydrophilic Interactio	n Column Selection
------------------------	--------------------

Application	Agilent Columns	Notes	
Glycans cleaved from a glycoprotein	AdvanceBio Glycan Mapping	Amide bonded phase for rapid equilibration and enhanced selectivity for glycans.	A
		Based on a fully porous particle for high-speed separations and high throughput applications. Stability to 1200 bar for use with the 1290 Infinity II LC.	
	2.7 µm	Based on Poroshell technology to give a superficially porous particle with reduced diffusion distances. This gives high-resolution separations at lower pressures, and enables the use of longer column lengths for increased separation efficiency.	_
Hydrophilic peptides and glycopeptides	ZORBAX RRHD 300 Å, 1.8 µm	A 300 Å silica particle to provide an orthogonal separation to the ZORBAX RRHD 300 Å, 1.8 μm reversed-phase columns.	A
	AdvanceBio Glycan Mapping	The amide bonded phase provides an alternative HILIC functionality for small hydrophilic peptides and glycopeptides.	_

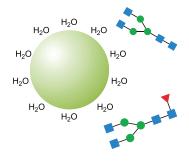
AB Part of the AdvanceBio family

Tips and tools

You can connect your Agilent BioHPLC column with InfinityLab Quick Connect fittings and metal-free bio-inert capillaries.

Learn more: www.agilent.com/chem/5991-7469EN

AdvanceBio Glycan Mapping columns


AdvanceBio Glycan Mapping columns, standards, and sample preparation products for the selective removal of the N-glycans from a glycoprotein, including monoclonal antibodies.

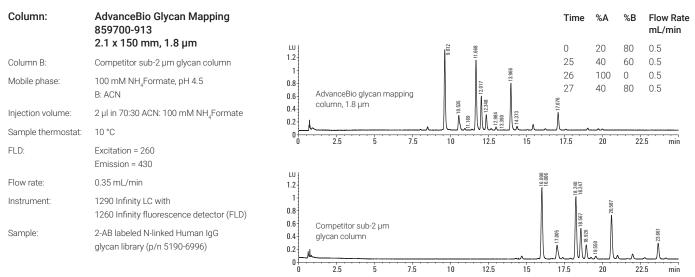
Speed of analysis $-1.8 \ \mu m$ columns provide high throughput N-glycan analysis where speed is the primary concern either due to the number of samples or to the immediate requirement for data.

Resolution—high resolution separations are achieved using the 2.7 µm particles packed in the 250 mm column. This increased resolution enables accurate quantitation of target glycans and changes to the protein glycosylation profile, which may have occurred during expression.

Comprehensive methods—for sample preparation, chromatographic analysis, and data interpretations to ensure reproducibility, and accuracy of identification and quantitation

Simplicity of ordering—a single part number to order the full sample preparation workflow for protein solubilization to purification of 2-AB labeled glycans, plus kits for each part of the sample preparation workflow for versatility.

Column Specifications

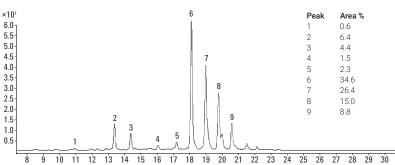

Bonded Phase	id (mm)	Particle	Endcapped	pH Stability	Operating Temperature	Pressure Limit
Amide HILIC	2.1 and 4.6	1.8 µm, fully porous	No	2-7	40 °C	1200 bar
Amide HILIC	2.1 and 4.6	2.7 µm, superficially porous	No	2-7	40 °C	600 bar

The mapping of the N-linked glycan component of a glycoprotein, including monoclonal antibodies, requires the N-glycans to be enzymatically cleaved, using PNGase F, from the protein amino acid backbone. The cleaved N-glycans can be analyzed by hydrophilic interaction chromatography with MS detection, or after derivatization with a fluorophore, 2-aminobenzamide (2-AB) analyzed using HPLC/UHPLC using either FLD or MS. The AdvanceBio Glycan columns provide both speed of analysis, 1.8 μ m, and resolution, 2.7 μ m, for the identification and quantitation of the cleaved glycans.

Speed of analysis

The AdvanceBio Glycan Mapping 1.8 µm columns are recommended for high throughput analysis where short run times are required.

Superior results-in 40% less time than the competition


The AdvanceBio Glycan Mapping column delivers better resolution, narrower bands, and higher peak capacity than the non-Agilent sub-2 μ m column in a 2.1 x 150 mm configuration.

Resolution

The AdvanceBio Glycan Mapping 2.7 µm media, in longer column lengths, are recommended for high resolution separations.

Superior results-in 40% less time than the competition

Column:	AdvanceBio Glycan Mapping 859700-913 2.1 x 150 mm, 1.8 μm			
Instrument:	1290 Infinity binary	LC		
Buffer:	A: 100 mM ammonium formate in water, pH 4.5			
	B: Acetonitrile			
MS conditions:	Gas temperature: Sheath gas	250 °C		
	temperature:	250 °C		
	Gas flow:	8 L/min		
	Sheath gas flow:	8 L/min		
	Nebulizer:	25 psi		
	Vcap:	3,500 V		
	Nozzle:	1,000 V		
	Fragmentor:	200 V		
	Skimmer:	45 V		
	Oct 1 RF Vpp:	550		
	Collision energies:	15 and 30 V		
	Mode:	MS and targeted MS/MS		

The N-glycans cleaved from fetuin using PNGase F were analyzed after 2-AB derivatization using UHPLC —FLD. The peak assignment by MS shows that the N-glycans cleaved from fetuin are complex biantennary and triantennary glycans containing N-acetylneuramic acid (NeuAc) but no fucose. Fetuin 2-AB N-glycans analyzed using HILIC-UHPLC with peak assignments determined by MS.

Instrument conditions

	Antibody Standard Gradient	Fetuin Gradient	Ovalbumin Gradient
Starting flow rate	0.5 mL/min	0.5 mL/min	0.5 mL/min
Gradient	0 min 85% B	0 min 75% B	0-6 min 85% B
	5 min 75% B	45 min 50% B	10 min 80% B
	35 min 64% B	47 min 40% B, flow 0.5 mL/min	60 min 70% B
	40 min 50% B	47.01 min, flow 0.25 mL/min	65 min 50% B, flow 0.5 mL/min
	42 min, flow 0.5 mL/min 42.01 min, flow 0.25 mL/min	49 min 0% B	65.01 min, flow 0.25 mL/min
	43 min, 0% B	51 min 0% B	68 min 0% B
	48 min 0% B	51.01 min 75% B, flow 0.25 mL/min	73 min 0% B
	50 min 85% B 50.01 min, flow 0.25 mL/min	52.00 min, flow 0.5 mL/min flow	74 min 85% B, 0.25 mL/min
	51 min, flow 0.5 mL/min		75.00 min, flow 0.5 mL/min
Stop time	51 min	52 min	75 min
Posttime	20 min	20 min	20 min
Injection volume	5 µL	1 µL	1 µL
Thermostat autosampler	5°C		
FLD	Excitation = 260 nm Emission = 430 nm		
Peak width	>0.013 min (0.25 s resp. time)) (37.04 Hz)	

Detailed information of N-glycan ovalbumins				
Peak	Oxford	Structure		
1	A2G2S1	←-{ <mark></mark>		
2, 3	A2G2S2	+		
4	A3GGS2			
5	A3G3S3, A3G3S2 (trace)			
6	A3G3S3, A3G3S2 (trace)			
7	A3G3S3, A3G3S4 (trace)			
8	A3G3S4, A3G3S3			
9	A3G3S4			
		Eurose		

▲ Fucose

N-Glycan standards

Agilent provides the reference materials, IgG N-linked glycan standard, and dextran ladder standard, needed as part of the workflow to ensure optimum performance of both sample preparation and the LC system. The two standards are available with the 2-AB label attached and also without the 2-AB label for use as sample preparation reference materials.

The IgG N-linked glycan standard is used as a QA test for every batch of the AdvanceBio Glycan mapping media to ensure each column meets the stringent reproducibility requirements for this demanding analysis.

The dextran ladder standard is used for calibrating the system based on elution times of the glucose units (GU) in the dextran homologous series and for reporting out GU relative retention data.

Separation of a 2-AB labeled dextran ladder

Column:	AdvanceBio Glycan Mapping 859700-913 2.1 x 150 mm, 1.8 μm
Mobile phase:	A: 100 mM NH4Fc, pH 4.5 B: ACN
FLD:	Excitation = 260 nm Emission = 430 nm
Injection volume:	$2\mu\text{L}$ (10 pmol total glycan/1 μL 75:25 ACN:water)
Sample:	2-AB (p/n 5190-6998) labeled dextran ladder

4	Time	% A	%В	Flow Rate (mL/min)
	0	25	75	1.0
	12	40	60	1.0
3	12.15	60	40	0.5
	12.5	60	40	0.5
2	12.9	25	75	0.5
	13.05	25	75	1.0
	15	25	75	1.0
	 <u></u>	<u> </u>	// ' ' 12	<u> </u>

This analysis uses the Agilent dextran ladder standard, together with an AdvanceBio Glycan Mapping column to correlate retention times of unknown glycans.

AdvanceBio Glycan Mapping, 1.8 µm, Stable to 1200 Bar

Size (mm)	Part No.
2.1 x 150	859700-913
2.1 x 100	858700-913
2.1, 1.8 μm, Fast Guard	821725-905

AdvanceBio Glycan Mapping, 2.7 μm , Superficially Porous, Stable to 1200 Bar

Size (mm)	Part No.
4.6 x 250	680975-913
4.6 x 150	683975-913
4.6 x 100	685975-913
2.1 x 250	651750-913
2.1 x 150	683775-913
2.1 x 100	685775-913
2.1, 2.7 µm, Fast Guard	821725-906

N-Glycan Standards

Size (mm)	Part No.
Dextran ladder standard, 10 μg, 0.5 mL vial	5190-6997
2-AB labeled dextran ladder standard, 200 pmol	5190-6998
IgG N-linked glycan library, 20 μg, 0.5 mL	5190-6995
2-AB labeled IgG N-linked glycan library, 200 pmol	5190-6996

Hydrophilic and glycopeptide analysis

Peptide analysis demands high selectivity and run-to-run reproducibility as provided by reversed-phase chromatography. However, reversed-phase columns have limited retention and selectivity for hydrophilic peptides, including glycopeptides. The ZORBAX RRHD 300-HILIC, 1.8 μ m columns provide increased retention of hydrophilic and glycopeptides compared to reversed-phase columns so that valuable information is not lost when doing peptide mapping experiments.

The two techniques are orthogonal and provide complementary information for protein primary structure analysis.

- A ZORBAX 300 Å particle for analysis across the range of peptide sizes
- The 1.8 µm particle delivers UHPLC performance with 1200 bar stability
- Provides UHPLC orthogonality when used with the ZORBAX RRHD 300 Å reversedphase columns

Column Specifications						
Bonded Phase	id (mm)	Particle Size	Endcapped	pH Stability	Operating Temperature	Pressure Limit
Silica	2.1	1.8, fully porous	No	1-8	40 °C	1200 bar

Peptide mapping is used for characterization and impurity profiling of protein biotherapeutics. Reversed-phase UHPLC/HPLC is routinely used but when the digest contains hydrophilic peptides, such as glycopeptides, valuable information may be missed. The ZORBAX RRHD 300-HILIC column retains the hydrophilic glycopeptides and, when coupled with mass spectrometry, provides identification of this important group of protein fragments.

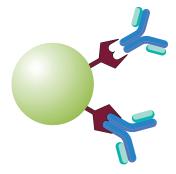
Glycopeptide identification in a protein tryptic digest

Column:	ZORBAX RRHD 300-HILIC 858750-901 2.1 x 100 mm, 1.8 μm
Mobile phase:	A: 100% ACN B: 50 mM ammonium formate, pH 4.5
Flow rate:	0.4 mL/min
Injection:	5 µg
Detector:	UV, 280 nm
Instrument:	1290 Infinity LC, 6224 accurate-mass time-of-flight, dual ESI source in positive ion mode
Sample:	Glycopeptide from digested EPO protein (1 mg/mL)

Figure UV shows the separation of an erythropoietin (EPO) peptide map using the ZORBAX RRHD 300-HILIC 2.1 x 100 mm column and Figure MS shows the extracted compound chromatograms of matched EPO. Seven peptides were identified from the HILIC-MS data that were not identified by RP-MS. HILIC is orthogonal to RP and provides additional resolution of the hydrophilic glycopeptides, in a protein enzyme digest.

ZORBAX RRHD 300-HILIC 1.8 µm Columns

Size (mm)	id (mm)	Particle Size (µm)	Part No.
ZORBAX RRHD 300-HILIC	2.1 x 100	1.8	858750-901
ZORBAX RRHD 300-HILIC	2.1 x 50	1.8	857750-901


Titer Determination

Affinity chromatography is a powerful technique that takes advantage of highly specific molecular interactions, frequently between specific proteins (for example, antigen/antibody). Agilent offers several specialty affinity products, monolithic Protein A and monolithic Protein G columns for the isolation and quantitation of IgG and a series of multiple affinity removal systems for the elimination of high abundance proteins in biological samples.

Bio-Monolith HPLC columns

- Designed for the analytical separation of all IgG (human and mouse)
- Flow rate independent separations; no diffusion, no pores, and no void volume make transport between mobile and stationary phase very rapid
- Extremely fast separations speed up method development time and decrease costs
- Locking in method parameters takes significantly less time and buffer

Bio-Monolith Protein A and Protein G HPLC columns are part of the Bio-Monolith column family. Protein A and Protein G Bio-Monolith columns are compatible with HPLC and preparative LC systems, including 1100, 1200, and 1260 bio-inert quaternary LC.

Bio-Monolith Protein A column, 5069-3639

Tips and tools

For more information on salt tolerance for mAb binding and acidic buffers compatibility for mAb elution on Bio-Monolith Protein A columns, see publication **5991-2990EN**.

www.agilent.com/search

Column Specifications	
Dimensions	5.2 mm x 4.95 mm
Column volume	100 µL
Maximum pressure	150 bar (15 MPa, 2,200 psi)
Temperature min/max	Operating: 2-40 °C
	Storage: 2-8 °C
Recommended pH	Operating range: 2-13
	Cleaning-in-place: 1-14
Materials of construction	Hardware: stainless steel
	Packing: poly (glycidyl methacrylate-co-ethylene dimethacrylate) highly porous monolith
Color ring identifier	Bio-Monolith Protein A: white Bio-Monolith Protein G: orange
Shelf life/expiration date	12 months

Bio-Monolith Protein A and Protein G

Description	Part No.
Bio-Monolith Protein A, 4.95 x 5.2 mm	5069-3639
Bio-Monolith Protein G, 4.95 x 5.2 mm	5190-6900

Tips and tools

Further information can be found in:

mAb Titer Analysis with the Agilent Bio-Monolith Protein A Column (publication 5991-5135EN)

Agilent Bio-Monolith Protein A Monitors Monoclonal Antibody Titer from Cell Cultures (publication 5991-2990EN)

Cell Clone Selection Using the Agilent Bio-Monoltih Protein A Column and LC/MS (publication 5991-5124EN)

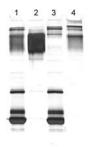
Cell Culture Optimization Using an Agilent Bio-Monolith Protein A Column and LC/MS (publication 5991-5125EN)

www.agilent.com/search

Binding Affinity of Bio-Monolith Protein A and G for Different IgG Subclasses

Antibody	Protein A	Protein G
Human		
Human IgG1	++++	++++
Human IgG2	++++	++++
Human IgG3	-	++++
Human IgG4	++++	++++
Human IgA	++	-
Human IgD	++	-
Human IgE	++	-
Human IgM	++	-
Mouse		
Mouse IgG1	+	++
Mouse IgG2a	++++	++++
Mouse IgG2b	++++	+++
Mouse IgG3	+	+++
Mouse IgM	+/-	-
Antibody fragments		
Human Fab	+	+
Human F(ab')2	+	+
Human scFv	+	+
Human Fc	+	+
Human к	+	+
Human λ	+	+

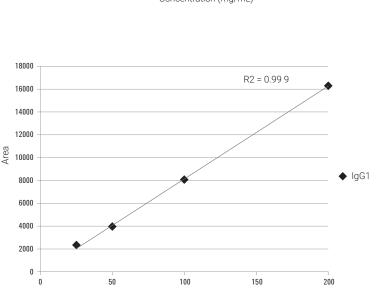
++++ = Strong affinity +++ = Moderate affinity ++ = Weak affinity + = Slight affinity - = No affinity



Rapid humanized monoclonal antibody quantitation

Column:	Bio-Monolith Protein A 5069-3639 5.2 x 4.95 mm			
Mobile phase:	A: 50 mM phosphate, pH 7.4 B: 100 mM citric acid, pH 2.8			
Flow rate:	1 mL/min			
Injection volume:	Variable (50 µL, optimized for CHO cell culture supernatant contains IgG1)			HO cell culture
Gradient:	Time (min) 0 to 0.5 0.6 to 1.7 1.8 to 3.5	%A 100 0 100	%B 0 Binding 100 0 Re-equili	Eluting brating

	RT (min)	Peak Area
1	383	1.666
2	372	1.666
3	365	1.665
4	389	1.667
5	383	1.666
6	378	1.666
7	379	1.668
8	377	1.666
9	376	1.667
10	377	1.667
Mean	378	1.667
S	6.52	0.001
%RSD	1.73	0.060

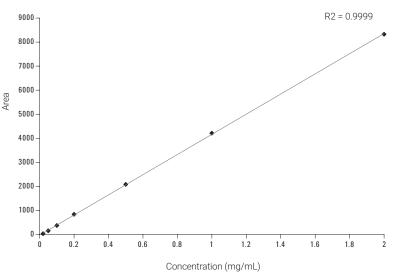

Calibration curves of modified humanized Trastuzumab (panel A: 0-2 mg/mL, and B: 25-200 mg/mL)

Key:

Lane 1: Whole serum before separation Lane 2: IgG standard Lane 3: Peak 1 (flow-through fraction) Lane 4: Peak 2 (Protein A-bound fraction; for example, IgG1)

SDS PAGE analysis of fractions from the separation

Fraction collection: Time-based IgG1 (1-20 mg/mL) and CHO cell supernatant contains


IgG1 (up to 20 mg/mL total protein)

Ambient

UV, 280 nm

Temperature: Detector:

Sample:

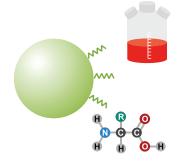
Column:	Bio-Monolith Protein A 5069-3639 5.2 x 4.95 mm	mAU
Mobile phase:	A: Sodium phosphate buffer, 20 mM, pH 7.4 B: Citric acid, 0.1 M, pH 2.8	800 <i>E. coli</i> proteins (unbound)
Flow rate:	1.0, 1.5, and 2.0 mL/min	
Injection:	4 μL (from 2.5 mg/mL IgG1 spiked with 20 mg/mL of E.coli supernatant) detector: UV, 280 nm	E 600 ← IgG1
Gradient:	0% B for 0.5 min, 100% B from 0.6-1.7 min, 0% B from 1.8-3 min	(III 087 / n) 400 IgG1 400 IgG1 400 IgG1 1gG1 IgG1 115 mL/min
Temperature:	25 °C	م ق ب ب ب ب ب ب ب ب ب ا ا ب ا ا ا ا ا ا ا
Sample:	Humanized IgG1 and E.coli lysate	200 igG1
Instrument:	1260 Infinity bio-inert LC	0 0.5 1 1.5 2 2.5 3

No impact on binding efficiency with high flow rate

Binding of IgG1 with the Bio-Monolith Protein A column evaluated at several flow rates. More sample was loaded for this study to easily observe changes in chromatogram and signal integration.

Flow Rate Versus Peak Relative Area on Unbound Proteins and IgG1						
Flow Rate (mL/min)	Unbound Area (mAu/S)	lgG1 Area (mAu/S)	Unbound Relative area (%)	lgG1 Relative area (%)	Pressure (bar)	
1.0	1230	738	63	37	32	
1.5	840	492	63	37	47	
2.0	636	363	64	36	68	

Cell Culture and Amino Acid Analysis

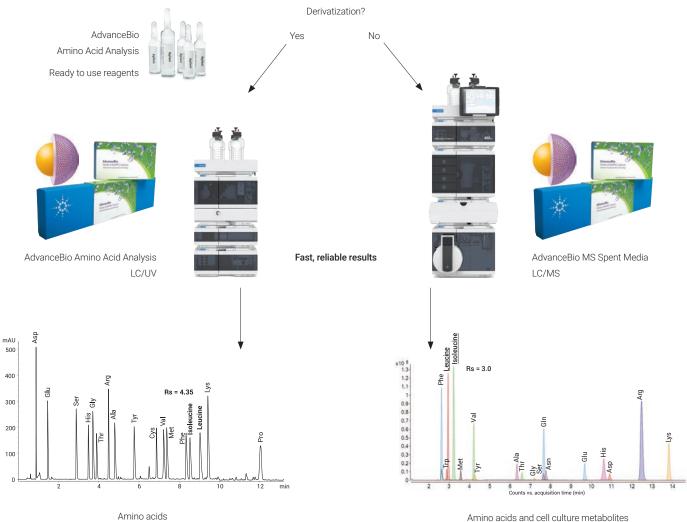

AdvanceBio columns from Agilent make it easier for your biotech lab to analyze amino acids and other small metabolites in spent cell culture media—with or without sample derivatization. Columns for both solutions are tested with amino acids to ensure quality and performance. Simply choose the workflow that suits your needs.

Choose the Agilent AdvanceBio Amino Acid Analysis kit for industry-standard LC/UV analysis

- Get automated online derivatization of amino acids with reverse-phase LC separation and UV detection.
- Use any Agilent LC system.
- Minimize your investment in instrumentation and expertise.

Choose Agilent AdvanceBio MS Spent Media columns for fast, underivatized LC/MS analysis

- Analyze amino acids and other cell culture metabolites with a single method: HILIC LC separation with MS detection.
- Eliminate the need to derivatize your sample.
- Use any LC/MS system.
- No need for baseline chromatographic resolution with MS detection.



Tips and tools

Agilent InfinityLab well plates and sealing mats are the ideal sample containers for your high-throughput LC/MS applications.

Visit: www.agilent.com/chem/well-plates

Agilent solutions for spent media analysis

Amino acids and cell culture metabolites

AdvanceBio Amino Acid Analysis (AAA)

Agilent's AdvanceBio Amino Acid Analysis (AAA) columns deliver fast, sensitive, and reproducible separations of amino acids in protein hydrolysates and cell culture media.

AdvanceBio AAA includes proven reagents for amino acid derivatization, a ready-to-use amino acid standards kit, columns based on Agilent's innovative Poroshell technology, and expert support from Agilent. Alongside Agilent InfinityLab LC Series instruments, AdvanceBio AAA provides a complete solution for amino acid analysis.

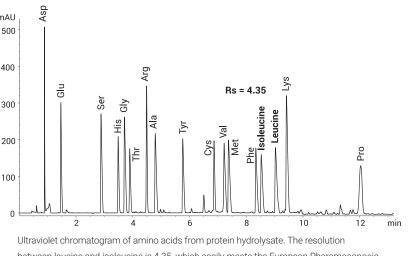
These columns are part of the Agilent AdvanceBio family—designed as innovative solutions for biomolecule characterization.

- Reliable results: high resolution separations delivered by efficient Poroshell particle morphology.
- Reduced costs: long column lifetimes from robust, high-pH resistant, chemically modified silica.
- Increased flexibility: compatibility with both HPLC and UHPLC systems via 2.7 µm diameter particles.
- Quality control: AdvanceBio AAA columns are batch tested with amino acid standards to ensure quality.
- Easy ordering: standards and reagents available as kits.
- Automated online derivatization: with Agilent analytical injection systems.

Column Specifications

Bonded Phase	Particle Size	Pore Size	Temp Limit	pH Range	Endcapped	Pressure Limit
C18	2.7 µm	100 Å	60 °C	3.0-11.0	Double	600 bar

Tips and tools


To learn about Agilent's end-to-end solution for amino acid analysis, please visit: www.agilent.com/chem/aaa-how-to-guide

AdvanceBio Amino Acid Analysis (AAA) Columns

Description	Part No.
AdvanceBio Amino Acid Analysis 100 Å, 3.0 x 100 mm, 2.7 μm	695975-322
AdvanceBio Amino Acid Analysis 100 Å, 4.6 x 100 mm, 2.7 μm	655950-802
AdvanceBio Amino Acid Analysis 100 Å, 3.0 x 5 mm, 2.7 μm (3-pack guards)	823750-946
AdvanceBio Amino Acid Analysis 100 Å, 4.6 x 5 mm, 2.7 μm (3-pack guards)	820750-931

LC/UV

Column:	Agilent AdvanceBio Amino Acid Analysis 4.6 x 100 mm p/n 655950-802		m E
Column temperature:	30 °C		4
Mobile phase:	Low pH, positive ion mode MS detection: A = 10 mM Na_2HPO_4 , 10 mM $Na2B407$, pH 8.2 B = acetonitrile:methanol:water, 45:45:10 (v:v:v)		3
Flow rate:	1.5 mL/min		
Gradient:	Time (min) 0 0.35 13.4 13.5 15.7 15.7 18	%B 2 57 100 2 2 end	1
Sample:	Protein hydrolysate		
Detection:	Agilent 1260) Infinity II DAD WR	

between leucine and isoleucine is 4.35, which easily meets the European Pharamacopoeia requirement that resolution be greater than 1.5. [European Pharmacopoeia 9.0 (2.2.56) Amino Acid Analysis.]

AdvanceBio Amino Acid Analysis standards and kit

All necessary derivatization reagents and amino acid standards for quantitation are included in a single part number. Individual components may be reordered as needed.

AdvanceBio Amino Acid Analysis (AAA) Standards and Reagents

Description	Part No.
Standards and reagents kit	5190-9426
Kit contents (can be ordered separately)	
Buffer, borate, 100 mL	5061-3339
FMOC reagent, 10 ampoules, 1 mL each, for AAA	5061-3337
OPA reagent, 10 mg/mL, 6 ampoules, 1 mL each	5061-3335
Dithiodiproprionic acid (DTDPA), 5g	5062-2479
AA standard, 1 nmol, 10/pk	5061-3330
AA standard, 250 pmol, 10/pk	5061-3331
AA standard, 100 pmol, 10/pk	5061-3332
AA standard, 25 pmol, 10/pk	5061-3333
AA standard, 10 pmol, 10/pk	5061-3334
AA supplement, 1 g each	5062-2478

Each amino acid standard contains the following amino acids:

_

- Glycine _
- L-cysteine _
- L-histidine _
- L-tyrosine _
- L-leucine _
- L-methionine
- L-serine
- L-alanine
 - L-phenylalanine _
 - L-glutamic acid _ L-proline

L-isoleucine

- L-arginine _ L-threonine
- L-valine
 - L-lysine _
 - L-aspartic acid _

Buffer, borate, 100 mL, 5061-3339

AA supplement, 1 g each, 5062-2478

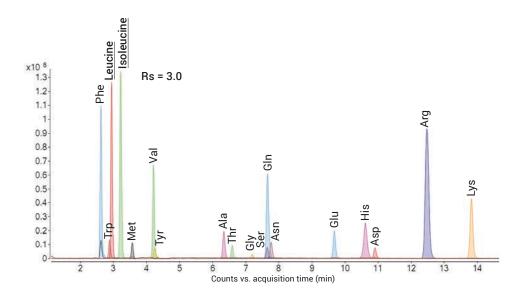
AdvanceBio MS Spent Media

Agilent AdvanceBio MS Spent Media columns are HILIC columns that deliver fast, sensitive, and reproducible separations of underivatized amino acids and other polar metabolites found in bioprocessor cell culture media for mass spectrometric detection.

Alongside Agilent InfinityLab LC series instruments and Agilent MS instruments, AdvanceBio MS Spent Media provides a complete solution for spent media analysis.

AdvanceBio MS Spent Media analysis is a new addition to the Agilent AdvanceBio family, designed as innovative solutions for biomolecule production and characterization.

- Fast, MS-based workflow
- No sample derivatization needed, saving time and resources
- PEEK-lined stainless steel column hardware for an inert flow path to achieve excellent peak shape and recovery of challenging ionic metabolites
- Baseline chromatographic resolution of leucine and isoleucine isomers
- Columns are tested with amino acids to ensure quality and performance
- Excellent analytical sensitivity with MS-friendly mobile phases
- Compatibility with both HPLC and UHPLC systems via 2.7 µm Poroshell particle

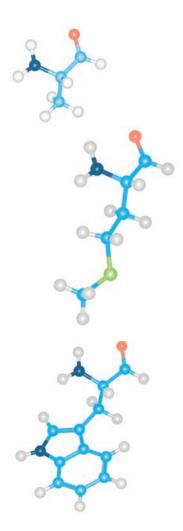

Column Specifications					
Bonded Phase	Pore Size	Particle Size	Temperature Limit	pH Range	Pressure Limit
HILIC-Z	100 Å	2.7 µm	80 °C (at pH 7)	3.0-11.0 (at 35 °C)	600 bar

AdvanceBio MS Spent Media

Description	Part No.
AdvanceBio MS Spent Media 100 Å, 2.1 x 50 mm, 2.7 µm	679775-901
AdvanceBio MS Spent Media 100 Å, 2.1 x 100 mm, 2.7 µm	675775-901
AdvanceBio MS Spent Media 100 Å, 2.1 x 150 mm, 2.7 µm	673775-901

LC/MS

Column:	Agilent AdvanceBio MS Spent Media 2.1 x 100 mm p/n 675775-901	Flow rate: Gradient:	0.5 mL/ Time (min) 0	'min %B (Low pH, positive ion mode)) 1.00	% B (High pH, negative ion mode) 100
Column temperature: Mobile phase:	30 °C Low pH, positive ion mode MS detection: A = 10% 200 mM ammonium formate in water pH 3, 90% water B = 10% 200 mM ammonium formate in water	Sample: Detection:	15 15.5 20 Cell cult with mo		
	pH 3, 90% acetonitrile Final salt concentration is 20 mM. We recommend preparing mobile phases from a concentrated buffer stock to ensure robust and consistent mobile phases.	Detection.	Aglient	6230 time-of-flight LC/	ΜS



ZORBAX Eclipse Amino Acid Analysis (AAA)

- Tested for amino acid analysis
- Uses well-known OPA and FMOC precolumn derivatization chemistry
- Easily automated using a detailed online, derivatization protocol available for use with the InfinityLab LC series

The ZORBAX Eclipse AAA column separates amino acids following an updated and improved protocol. Total analysis from injection-to-injection can be achieved in 14 min (9 min analysis time) on shorter, 75 mm length columns and 24 min (18 min analysis time) on the 150 mm column length. Sensitivity (5-50 pmol with DAD, FLD) and reliability are achieved using both OPA and FMOC derivatization chemistries in one fully automated procedure using the InfinityLab LC series.

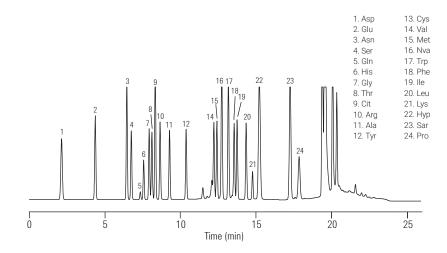
For high speed amino acid analysis on UHPLC systems, ZORBAX Eclipse Plus C18 1.8 μm columns give excellent results.

ZORBAX Eclipse Amino Acid Analysis (AAA) Columns

Description	Size (mm)	Particle Size (µm)	Part No.
Analytical routine sensitivity	4.6 x 150	5	993400-902
Analytical routine sensitivity, high resolution using FLD	4.6 x 150	3.5	963400-902
Analytical routine sensitivity, high throughput	4.6 x 75	3.5	966400-902
Solvent Saver high sensitivity, high resolution	3.0 x 150	5	961400-302
Guard cartridges, 4/pk	4.6 x 12.5	5	820950-931
Guard hardware kit			820999-901

ZORBAX Eclipse Plus

Description	Size (mm)	Particle Size (µm)	Eclipse Plus C18 USP L1
Narrow bore RRHD, 1200 ba	2.1 x 50	1.8	959757-902
Narrow bore RRHT, 600 bar	2.1 x 50	1.8	959741-902


Tips and tools

Further information can be found in: Automatic Precolumn Derivatization of Amino Acids and Analysis by Fast LC using the Agilent 1290 Infinity LC System (publication **5990-5599EN**)

www.agilent.com/search

High resolution of 24 amino acids

Column:	ZORBAX Eclipse AAA 963400-902 4.6 x 150 mm, 3.5 μm
Mobile phase:	A: 40 mM Na ₂ HPO ₄ , pH 7.8
	B: ACN:MeOH:water, 45:45:10 v/v
Flow rate:	2 mL/min
Temperature:	40 °C
Detector:	Fluorescence
Sample:	24 amino acids

This high resolution separation of 24 amino acids is achieved in 18 minutes. If the Rapid Resolution 4.6 x 75 mm Eclipse AAA column is selected, these amino acids are resolved in 9 minutes.

Tips and tools

Quick reference guides list the common supplies you should have on hand to keep your Agilent InfinityLab LC series operating at peak efficiency. Download your free copy at **www.agilent.com/chem/getguides**

Protein Depletion

To more easily isolate and identify proteins in biological samples, such as serum, plasma, and cerebrospinal fluid (CSF), the multiple affinity removal system is designed to chromatographically eliminate interfering high-abundance proteins from biological samples. Removal of these abundant proteins improves the subsequent LC/MS and electrophoretic analysis of the sample by effectively expanding the dynamic range.

Agilent protein fractionation system and proteomics reagents

- LC/MS analysis of biological samples
- Preparation for electrophoretic analysis
- Sample preparation for biomarker discovery
- Instrument and workflow validation
- Cost-effective immunodepletion
- Sample desalting, concentration, and fractionation

For sample fractionation and desalting, the Agilent mRP-C18 high-recovery protein column is designed to simultaneously desalt, concentrate, and fractionate in one easy step with extremely high recovery of samples as compared to conventional RP-HPLC columns that are fully compatible with LC/MS analysis.

In addition, validated reagents for sample preparation in biomarker discovery and other proteomics applications are also available, including a complex standard, and proteomics grade trypsin. For your convenience, these reagents are fully compatible with Agilent LC/MS methods and require no additional sample pretreatments.

Large volume requirements and custom column dimensions can also be fulfilled with our custom configurations.

Multiple affinity removal system

The multiple affinity removal system enables the identification and characterization of high-value, low abundant proteins and biomarkers found in serum, plasma, and other biological fluids.

The multiple affinity removal system reproducibly and specifically removes up to fourteen high-abundant proteins found in human biological fluids and three high-abundant proteins found in mouse biological fluids.

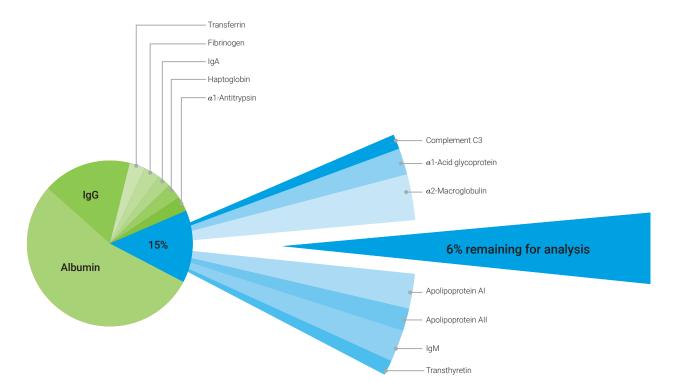
The multiple affinity removal system is available in a variety of LC column dimensions and in spin cartridge format. When combined with Agilent optimized buffers, convenient spin filters, and concentrators, the multiple affinity removal system creates an automated, integrated depletion solution compatible with most LC instruments (columns), and bench-top centrifuges (spin cartridges).

Samples depleted using the multiple affinity removal system are ready for downstream analyses such as 2D gel electrophoresis, LC/MS, and other analytical techniques.

Multiple affinity removal system

Tips and tools

For more information on how to reduce your cycle time for affinity chromatography, see:


Reducing Cycle Time for Affinity Removal of High-Abundant Proteins in Human Plasma. Alternating Column Regeneration Using an Agilent 1200 Infinity Series Quick-Change Bio-inert 2-position/10-port Valve and an Agilent 1290 Infinity Flexible Cube (publication **5991-4721EN**)

www.agilent.com/search

Multiple Affinity Removal System Selection Guide

Product	Proteins Removed	Total Protein Removed	Dimensions	Load Capacity	Part No.
MARS Human-14	Albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, fibrinogen,	94%	Spin cartridge	8-10 µL	5188-6560
	alpha2-macroglobulin, alpha1-acid glycoprotein, IgM, apolipoprotein Al, apolipoprotein. All, complement C3, transthyretin		4.6 x 50 mm	20 µL	5188-655
			4.6 x 100 mm	40 µL	5188-6558
			10.0 x 100 mm	250 µL	5188-6559
MARS Human-7	Albumin, IgG, IgA, transferrin, haptoglobin, antitrypsin, fibrinogen	88-92%	Spin cartridge	12-14 µL	5188-6408
			4.6 x 50 mm	30-35 µL	5188-6409
			4.6 x 100 mm	60-70 µL	5188-6410
			10.0 x 100 mm	250-300 μL	5188-641
MARS Human-6	Albumin, IgG, IgA, transferrin, haptoglobin, antitrypsin	85-90%	Spin cartridge	7–10 µL	5188-523
			4.6 x 50 mm	15-20 μL	5185-598
			4.6 x 100 mm	30-40 µL	5185-598
MARS Human- High Capacity	Albumin, IgG, IgA, transferrin, haptoglobin, antitrypsin	85-90%	Spin cartridge	14-16 µL	5188-534
			4.6 x 50 mm	30-40 µL	5188-5332
			4.6 x 100 mm	60-80 µL	5188-5333
			10.0 x 100 mm	up to 340 µL	5188-5336
MARS Human-2	Albumin, IgG	69%	Spin cartridge	50 µL	5188-8825
			4.6 x 50 mm	100 µL	5188-8826
MARS Human-1	Albumin	50-55%	Spin cartridge	65 µL	5188-5334
			4.6 x 50 mm	130 µL	5188-656
MARS Mouse-3	Albumin, IgG, transferrin	80%	Spin cartridge	25–30 µL	5190-2534
			4.6 x 50 mm	37-50 µL	5188-521
			4.6 x 100 mm	75–100 µL	5188-5218

Protein Depletion

High abundance proteins removed by Agilent multiple affinity removal columns and spin cartridges

Tips and tools

Learn more about Agilent's complete services portfolio at www.agilent.com/chem/services

Multiple affinity removal system starter kits

The LC Column and Spin Cartridge reagent Starter Kits include all the required supplies to use with the multiple affinity removal system. These buffers provide optimal conditions for column longevity and sample reproducibility.

- The kits provide enough Buffer A and Buffer B for approximately 200 sample depletions using the 4.6 x 50 mm LC columns, approximately 100 sample depletions using the 4.6 x 100 mm LC columns and 200 spin cartridge uses.
- Buffer A, the loading buffer, minimizes protein-protein interactions, allowing lowabundant proteins often bound to high-abundant proteins to pass through the column, while the targeted high-abundant proteins bind to their associated antibodies.
- Buffer B, the elution buffer, then disrupts the antibody-protein interaction eluting the high-abundant proteins off the column.

LC column reagent starter kit, 5185-5986

Multiple Affinity Removal System Starter Kits

Description	Part No.
High concentration sample dilution buffer, 50 mL	5188-8283
LC column reagent starter kit includes:	5185-5986
Buffer A, for loading, washing, and equilibrating, 1 L	5185-5987
Buffer B, for eluting, 1 L	5185-5988
0.22 µm cellulose acetate, 25/pk, 1 L	5185-5990
Spin concentrators, 5K MWCO, 4 mL, 25/pk	5185-5991
Multiple affinity removal spin cartridge reagent kit includes:	5188-5254
Buffer A, for loading, washing, and equilibrating, 1 L	5185-5987
Buffer B, for eluting, 1 L	5185-5988
2 x spin filters, 0.22 µm cellulose acetate, 25/pk	5185-5990
Spin concentrators, 5K MWCO, 4 mL, 25/pk	5185-5991
Luer-Lok adapters, 2/pk	5188-5249
Plastic syringe, 5 mL, Luer-Lok, 2/pk	5188-5332
6 x microtube, 1.5 mL, screw top, 100/pk	5188-5251
Caps and plugs, 6/pk	5188-5252
PTFE needles, Luer-Lok, 10/pk	5188-5253

Luer-Lok syringe, 5188-5250

Luer-Lok adapters, 5188-5249

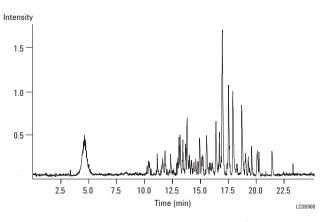
Luer-Lok needles, 5188-5253

Specialty Dimensions

Capillary and nano columns

- Highest sensitivity for your smallest sample sizes
- Compatible with all LC/MS interfaces
- Internal diameters of 0.5, 0.3, 0.1, and 0.075 mm
- 300 Å pore sizes for biomolecule analysis
- Ideal for 1D and 2D (proteomics) applications

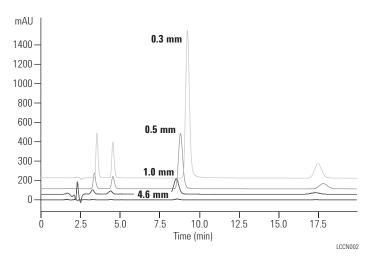
ZORBAX capillary (0.5 and 0.3 mm id) and nano columns (0.1 and 0.075 mm id) are available in a wide variety of phases, and dimensions. These columns are ideal for very sample-limited applications because they provide enhanced sensitivity by reducing on-column sample dilution.


Tips and tools

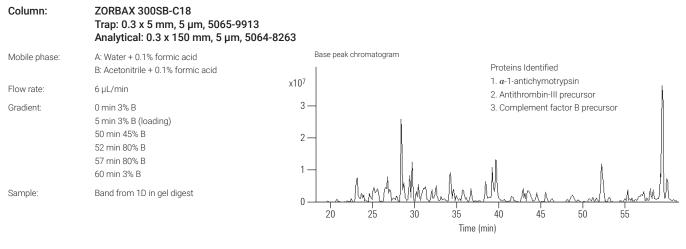
Agilent offers various e-seminars and on-site training to help you learn how to be a more effective chromatographer.

For more information, visit: www.agilent.com/chem/education

High sensitivity protein digest analysis by LC/MS


Column:	ZORBAX 300SB-C18 5065-9911 0.075 x 150 mm, 3.5 µm
Mobile phase:	A: Water + 0.1% formic acid B: ACN + 0.1% formic acid
Flow rate:	600 nL/min
Gradient:	2% B to 52% B in 25 min
Detector:	Positive ion nano Electrospray MS
Sample:	Digest of eight proteins 100 fm (1 μ L)

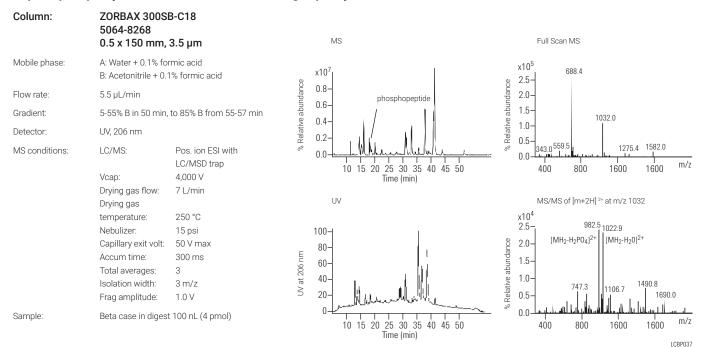
A ZORBAX nano HPLC column, 0.075 mm id, is used for high-sensitivity LC/MS analysis of a protein digest sample.


High sensitivity with capillary columns

Column:	ZORBAX SB-C18 5064-8255 0.3 x 150 mm, 5 μm
Column:	ZORBAX SB-C18 5064-8256 0.5 x 150 mm, 5 μm
Column:	ZORBAX SB-C18 863600-902 1.0 x 150 mm, 3.5 μm
Column:	ZORBAX SB-C18 883975-902 4.6 x 150 mm, 5 μm
Sample:	Biphenyl 200 ng

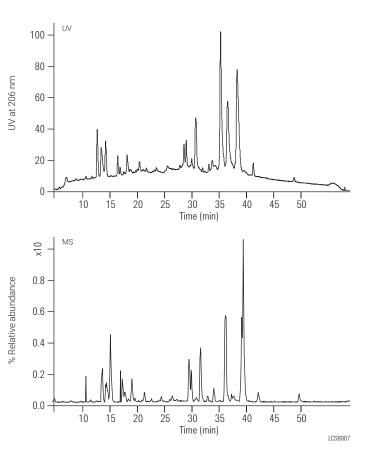
Sample-limited applications require capillary column dimensions to minimize on-column sample dilution and to enhance sensitivity. The 0.3 mm capillary in this example provides 100 times more sensitivity than the standard 4.6 mm column. Agilent nanobore (0.1 mm to 0.075 mm id) columns can provide up to 2,000 times more sensitivity for your most limited sample applications.

Human serum: low abundance protein isolation and identification from 1D gel band by LC/MS



Sample preparation of human serum: Major serum proteins removed using multiple affinity removal column, 4.6 x 100 mm (p/n 5185-5985) Followed by 1D gel digest

www.agilent.com/chem/advancebio


163

Peptide phosphorylation sites, LC and LC/MS using capillary LC columns

Capillary columns for HPLC analyses with UV and MS detection

Column:	ZORBAX 300SI 5064-8263 0.3 x 150 mm,		
Mobile phase:	5-55% B in 50 min, to 85% B from 55-57 min A: Water + 0.1% formic acid B: Acetonitrile + 0.1% formic acid		
Flow rate:	5.5 µL/min		
Detector:	UV, 206 nm		
MS conditions:	LC/MS:	Pos. ion ESI with LC/MSD trap, Vcap 4,000 V	
Drying gas flow:	7 L/min Drying gas temperature: Nebulizer: Capillary exit volt: Max accum time: Total averages: Isolation width: Frag amplitude:	3 3 m/z	
Sample:	Beta casein digest	100 nL (4 pmol)	

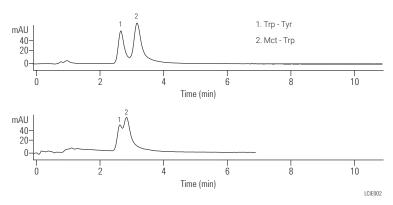
A ZORBAX 300SB-C18 capillary column (0.3 mm id) is used for the separation of the protein digest. Detection is by both UV and Electrospray MS. MS detection can be used for identification of peptide fragments.

Proteins in a complex sample by 2D HPLC with nano HPLC columns

olumn:	ZORBAX 300SB-C18 5065-9913 0.3 x 5 mm, 5 μm	
Column:	ZORBAX 300SB-C18 5065-9911 0.075 x 150 mm, 3.5 μm	×10 ⁶
obile phase:	Quaternary pump: 3% acetonitrile:0.1% formic acid Nano pump: A; water, 0.1% formic acid, B; ACN, 0.1% formic acid	0.5- 1.5- x105- 6-
ow rate:	Quaternary pump: 30 µL/min Nano pump: 300 nL/min	4- 2-will Hill Mary all Miller and Marker will will work and the day
Gradient:	Quaternary pump: isocratic Nano pump: 6 min = 3% B, 120 min = 60% B, 125 min = 80% B, 130 min = 80% B, 131 min = 3% B, 140 min = 3% B	×105 4 2 - 4 - 2 - - - - - - - - - - - - -
IS conditions:	Source: nano ESI, drying gas flow: 5 L/min, drying gas temp: 225 °C Ion trap: skim: 1:35 V, cap exit offset: 115 V, octupole 1:12 V, octupole 2:3.5 V, trap drive: 80 V. ICC: on, averages: 4, max accum time: 150 ms; target 60.000, ion mode positive, MS/MS mode	100 1.0 0.5
ample:	Tryptic digest of bovine serum albumin Volume: 1 to 8 μL Salt step elution: 8 mL of 10 mM to 100 mM KCI (10 mM increments), 125 mM, 150 mM, 200 mM, 300 mM, 500 mM, 1 M	Tryptic digest of bovine serum albumin (BSA). The base peak chromatograms show a selection of fractions from a 2D HPLC sep Single chromatograms represent peptides from BSA eluting at a giv concentration followed by enrichment and reversed-phase chroma

ZORBAX Bio-SCX Series II

ZORBAX Bio-SCX Series II columns are designed for optimized 2D separations of peptides and proteins using LC/MS. This packing is based on ultrapure $3.5 \,\mu m$ ZORBAX silica particles, bonded with a bio-friendly polymer that is functionalized with sulfonic acid groups. This gives strong retention and good peak shape in the ion-exchange step of 2D analysis of peptides and proteins.



HPLC Column Specifications

Bonded Phase	Pore Size	Surface Area	pH Range	Functionality	Max Pressure
ZORBAX Bio-SCX Series II	300 Å	90 m²/g	2.5-8.5	Sulfonic acid	350 bar

More retention of small peptides

Column:	ZORBAX Bio-SCX Series II 5065-9912 0.3 x 35 mm, 3.5 μm
Mobile phase:	95% 40 mM NaCl: 5% ACN, 0.3% formic acid
Flow rate:	5 µL/min
Detector:	UV, 230 nm
Sample:	Synthetic dipeptides

The ZORBAX Bio-SCX Series II column retains smaller peptides more strongly than some other SCX columns. The result is increased resolution of more hydrophilic peptide fragments and more accurate identification when these columns are used in 2D HPLC analysis.

Tips and tools

Agilent bio-inert supplies provide a metal-free sample flow path, which minimizes interactions with your biomolecules.

Visit: www.agilent.com/chem/bio-inert-uhplc

Description	Size (mm)	Particle Size (mm)	300SB-C18	300SB-C8	300Extend-C18
Capillary	0.5 x 250	5	5064-8266		
Capillary	0.5 x 150	5	5064-8264		
Capillary RR	0.5 x 150	3.5	5064-8268		
Capillary	0.5 x 35	5	5064-8294		
Capillary RR	0.5 x 35	3.5	5065-4459		
Capillary	0.3 x 250	5	5064-8265		
Capillary	0.3 x 150	5	5064-8263		
Capillary	0.3 x 35	5	5064-8295		
Capillary RR	0.3 x 150	3.5	5064-8267	5065-4460	5065-4464
Capillary RR	0.3 x 100	3.5	5064-8259	5065-4461	5065-4465
Capillary RR	0.3 x 75	3.5	5064-8270	5065-4462	5065-4466
Capillary RR	0.3 x 50	3.5	5064-8300	5065-4463	5065-4467
Replacement screens, 10/pk			5065-4427	5065-4427	5065-4427

ZORBAX HPLC Capillary Columns (Glass-Lined Stainless Steel)

ZORBAX Nano HPLC Columns (PEEK)

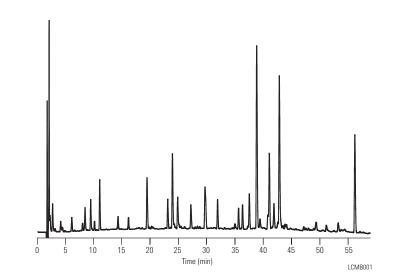
Description	Size (mm)	Particle Size (mm)	300SB-C18 USP L1	300SB-C8 USP L7
Nano RR	0.1 x 150	3.5	5065-9910	
Nano RR	0.075 x 150	3.5	5065-9911	
Nano RR	0.075 x 50	3.5	5065-9924	5065-9923
Trap/guard, 5/pk	0.3 x 5	5	5065-9913	5065-9914
Trap/guard hardware kit			5065-9915	5065-9915

ZORBAX 300SB-C18 trap/guard, 5065-9913

MicroBore (1.0 mm id) columns

- High sensitivity for small sample sizes
- Compatible with LC/MS interfaces
- Wide variety of bonded phases
- Silica and polymeric particles

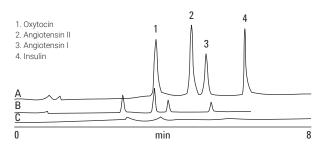
MicroBore (1.0 mm id) columns are a good choice when sample sizes are limited. They can improve detection limits by five times, compared to 2.1 mm id columns when the same sample mass is used. This increase in sensitivity can be critical. MicroBore columns use low flow rates (typically ~50 μ L/min). Therefore, these columns are ideal for use with detectors requiring low flow rates such as some mass spectrometers and with capillary LC systems.


Optimum performance is achieved when MicroBore columns are used with UHPLC/ HPLC Microbore systems. A wide variety of bonded phases is available for up to 400 bar including StableBond, 300SB-C18, 300SB-C8, and Poroshell columns. Polymeric reversed-phase, PLRP-S, and ion-exchange PL-SAX and PL-SCX are also available for applications requiring exceptionally stable wide-pore particles. Guard columns are also now available with an adjustable tube depth-stop to provide perfect zero dead volume connection every time.

Sterically protected 300StableBond bonded phase

Separation of a tryptic digest

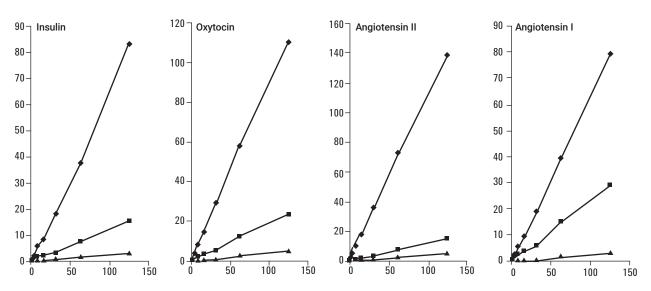
Column:	ZORBAX 300SB-C18 863630-902 1.0 x 150 mm, 3.5 μm
Mobile phase:	Gradient: 2-60% B in 60 min A: 0.1% TFA B: 0.075% TFA:80% ACN
Flow rate:	50 µL/min
Temperature:	50 °C
Detector:	UV, 215 nm
Sample:	Tryptic digest of rhGH 2 μL


This example of a tryptic digest separated on a MicroBore column demonstrates the high sensitivity and resolution possible with 1.0 mm id columns.

Microbore HPLC for sensitive peptide analysis

Column:	PLRP-S 100 Å 5 μm 150 mm x various id
Mobile phase:	A: 0.01 M tris HCl, pH 8 B: A + 0.35 M NaCl, pH 8
Flow rate:	1 mL/min
Gradient:	linear 20% ACN, 0.1% TFA to 50% ACN, 0.1% TFA over 15 min
Injection volume:	0.5 µL
Sample conc:	0.25 mg/mL
Detector:	UV, 220 nm

Peak identification


- A. 1.0 mm id (flow rate 47 $\mu\text{L/min})$
- B. 2.1 mm id (flow rate 200 $\mu\text{L/min})$
- **C.** 4.6 mm id (flow rate 1 mL/min)

Peptide separation on PLRP-S 100 Å 5 µm columns

Peak identification

- ♦ 1.0 mm
- 2.1 mm
- ▲ 4.6 mm

Standard curve data-point graphs on PLRP-S columns. Reduced column internal diameter reduces the limit of detection and enables quantitation of lower amounts of sample.

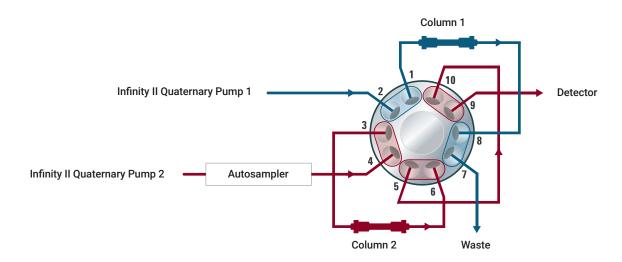
MicroBore (1.0 mm id)

Description	Size (mm)	Particle Size (mm)	300SB-C18 USP L1	300SB-C8 USP L7		
MicroBore	1.0 x 250	5	861630-902			
MicroBore RR	1.0 x 150	3.5	863630-902	863630-906		
MicroBore RR	1.0 x 50	3.5	865630-902	865630-906		
MicroBore guard, 3/pk	1.0 x 17	5	5185-5920	5185-5920		
Description	Size (mm)	Particle Size (mm)	Poroshell 300SB-C18	Poroshell 300SB-C8	Poroshell 300SB-C3	Poroshell 300Extend-C18
MicroBore	1.0 x 75	5	661750-902	661750-906	661750-909	671750-902
MicroBore guard, 3/pk	1.0 x 17	5	5185-5968	5185-5968	5185-5968	
Description	Size (mm)	Particle Size (µm)	PLRP-S 100 Å USP L21	PLRP-S 300 Å USP L21	PLRP-S 1000 Å USP L21	PLRP-S 4000 Å USP L21
MicroBore	1.0 x 150	3	PL1312-3300			
MicroBore	1.0 x 50	8			PL1312-1802	PL1312-1803
MicroBore	1.0 x 50	5	PL1312-1500	PL1312-1501	PL1312-1502	PL1312-1503
MicroBore	1.0 x 50	3	PL1312-1300	PL1312-1301		
Description	Size (mm)	Particle Size (µm)	PL-SAX 1000 Å	PL-SAX 4000 Å	PL-SCX 1000 Å	PL-SCX 4000 Å
MicroBore	1.0 x 50	5	PL1351-1502	PL1351-1503	PL1345-1502	PL1345-1503

2D-LC

- Combine two orthogonal LC techniques into a single analysis
- Provides greater peak capacity compared even with UHPLC methods
- Interfaces size exclusion and ion-exchange methods to MS

The heterogeneity and complexity of biomolecules necessitates the use of multiple LC techniques to identify and characterize a target biopharmaceutical. By combining two orthogonal techniques into one analysis, for example hydrophilic interaction and reversed-phase, or cation-exchange and reversed-phase, you can achieve unmatched separating power to enable identification and analysis of critical quality attributes.

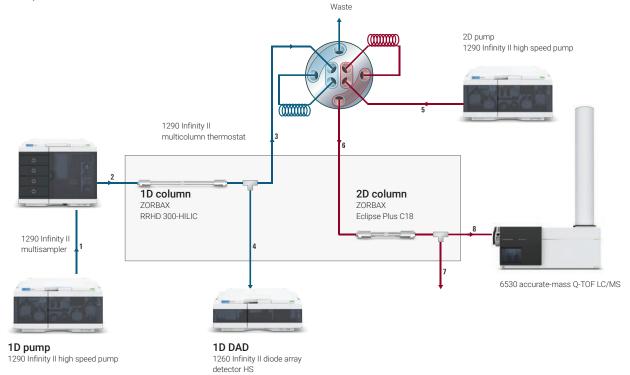

Applications for 2D-LC range from simple online desalting of a fraction obtained from a Protein A capture of a monoclonal antibody, to interfacing hydrophilic interaction and reversed-phase peptide mapping methods to characterize the full spectrum of peptide fragments—hydrophilic, glyco-, and hydrophobic peptide fragments.

Achieve increased productivity by using 2D-LC to shorten analysis times and maximize data generation/interpretation:

- Method scouting and application switching
- Offline column regeneration
- Online impurity analysis
- Heart-cutting 2D-LC
- Comprehensive 2D-LC

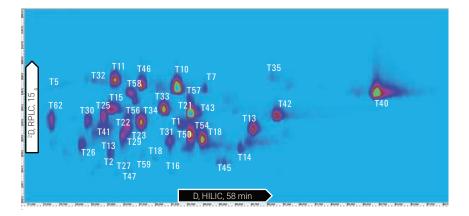
Offline column regeneration

For robust charge variant analysis using ion-exchange LC, a robust column cleanup and equilibration is required. This adds time to the total analysis and so ways of decreasing this time to increase sample throughput are needed. One way of doing this is to use offline column regeneration, which has been shown to reduce cycle time by as much as 40%.


A schematic showing the valve arrangement required for offline column regeneration as would be used for mAb charge variant analysis using the 1260 Infinity II bio-inert LC, and two Bio MAb PEEK, 2.1 x 250 mm, 5 µm columns.

Intra- (n = 6) and Inter-column (n = 12) Precision of Retention Time and Area

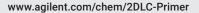
	Intra-column % RSD RT	Intra-column % RSD Area	Inter-column % RSD RT	Inter-column % RSD Area
CV1	0.205	250	0.247	3.39
CV2	0.183	1.91	0.218	1.63
CV3	0.247	1.13	0277	2.56
CV4	0.302	6.73	0.286	6.67
CV5	0.301	1.63	0.255	1.41
CV6	0.252	2.78	0.213	2.93


Good inter- and intra-column precision of retention time and area is achieved for the offline regeneration of the Bio MAb PEEK column. Intra-column (n = 6) and inter-column (n = 12).

Comprehensive 2D-LC

1	1D pump to autosampler	Calibration capillary (G1312-67500)
2	Autosampler to 1D column (1.6 µL heat exchanger)	Stainless steel, 0.17 mm
3	Tee 1 to 2D-LC valve	Stainless steel, 0.12 x 200 mm
4	Tee 1 to 1D DAD	Stainless steel, 0.12 x 140 mm
5	2D pump to 2D-LC valve	Stainless steel, 0.17 mm
6	2D-LC valve to 2D column (1.6 μL heat exchanger)	Stainless steel, 0.12 x 270 mm
7	Tee 2 to waste	Stainless steel, 0.12 x 340 mm
8	Tee 2 to detector (AJS source or DAD 2D)	Stainless steel, 0.075 x 340 mm (5067-4783)

InfinityLab 2D-LC system configuration for comprehensive 2D analysis of monoclonal antibody digests, and peptide mapping, using HILIC and RPLC-MS.



LCxLC contour plot for the analysis of the tryptic digest of trastuzumab generated with MS total ion count data. The two dimensions, HILIC in the first and RP in the second, had good orthogonality for this analysis.

Agilent has a wide range of phases available in the column sizes required. If you cannot find the combination of pore size, particle size, phase, and column size you require, contact our custom columns team who have a wealth of expertise in producing columns to meet specific performance criteria.

Tips and tools

To find out more about the fundamentals of 2D-LC, see our 2D-LC primer: *Principles, Practical Implementation and Applicati ons of Two-Dimensional Liquid Chromatography* (publication **5991-2359EN**)

Purification—Prep HPLC

Agilent has a comprehensive range of silica and polymeric HPLC columns and media designed for biomolecule purification. There are high efficiency small particle prep columns optimized for the purification of µg and mg amounts of a biopharmaceutical drug candidate, and fully porous bulk media, to pack development and process columns to purify g, kg, and multi-kg of API.

Some columns are specifically designed to address the needs of high-efficiency purification, while other products provide easy scale-up from small particle analytical columns to full-scale API production. Table 1 shows prep column/media options and the quantity of product that can be purified.

Polymeric Prep HPLC columns

Biopharmaceutical Lifecycle		Discovery mg high efficiency	Development g	Production kg multi-kg high throughput
	mrP-C18			
	ZORBAX Prep HT 300 Å StableBond			
Reversed-phase	VariTide RPC			>
	PLRP-S 100 Å, 300 Å, 1000 Å, 4000 Å		-	
	Bio MAb			
	Bio IEX			
Ion-exchange	PL-SAX			
	PL-SCX			
Size exclusion	Bio SEC-3 Bio SEC-5			

Agilent columns and media for biomolecule purification-chromatographic type, product family, and purification scale.

Purification Column Selection Application Technique Notes Agilent Columns mRP-C18 Proteomics Reversed-phase A specialist high recovery column for proteomics applications. It is designed for µg scale purification with maximum recovery. High efficiency 300 Å silica-based particles. All hiomolecules Reversed-phase ZORBAX PrepHT 300SB Synthetic peptides Reversed-phase Polymeric material designed for the purification of synthetic peptides. It is a high efficiency VariTide RPC single-column solution for the full range of synthetic peptides, acidic, basic, hydrophobic, and hydrophilic, and covers the size range of peptides produced by both solution and solid phase synthesis. All biomolecules Reversed-phase The premium polymeric reversed-phase family with a range of pore sizes and particle sizes to PLRP-S enable high efficiency laboratory scale purification using small particle prep columns, and scaleup to high-yield production purification with larger particles at the process scale. Use PLRP-S when purification will be scaled up to produce APIs and will need regulatory documentation. 3 µm and 5 µm for high efficiency 8 µm, 10 µm, 10-15 µm, 15-20 µm, 30 µm, and 50 µm particles for larger scale and low pressure purification Monoclonal antibodies Ion-exchange A nonporous weak cation-exchanger Bio MAb All biomolecules Bio IEX Ion-exchange Nonporous ion-exchangers SAX, WAX, SCX, and WCX functionalities to provide options for purification of acidic and basic molecules Nonporous 5 µm particle for highest efficiency lab prep PL-SAX All biomolecules Ion-exchange A fully porous strong anion-exchanger 5 µm particle size for high-efficiency separations $8\,\mu\text{m}, 10\,\mu\text{m}, \text{and}~30\,\mu\text{m}$ particles for larger scale medium and low pressure purification PL-SCX A fully porous strong cation-exchanger 5 µm particle size for high-efficiency separations 8 µm, 10 µm, and 30 µm particles for larger scale medium and low pressure purification All biomolecules Size exclusion Silica based SEC materials with a range of pore sizes Bio SEC-3 and 5 $3\,\mu\text{m},$ and $5\,\mu\text{m}$ particle sizes for high efficency Pore sizes for 100 Å to 2000 Å cover a wide range of sample molecular sizes

Tips and tools

Further information can be found in:

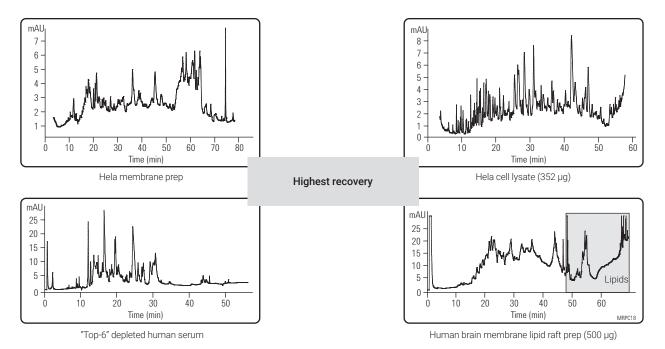
Biomolecule Purification (publication 5990-8335EN)

www.agilent.com/search

mRP-C18 high-recovery protein columns

The mRP (macroporous reversed-phase) C18 high-recovery protein column is designed for high recovery, high-resolution separation, fractionation, and simultaneous desalting of complex protein samples, such as immunodepleted serum or plasma proteins.

- Greater than 95 to 99% protein sample recovery has been observed with immunodepleted serum using the multiple affinity removal system—LC column
- Can load up to 380 µg of total protein mass without reducing chromatographic resolution of the proteins
- Column packed with macroporous C18-bonded ultrapure 5 µm particle silica designed to reduce or eliminate strong adsorption of proteins
- Maximum operating pressure of 250 bar (4,000 psi)
- Compatible with water and all common organic solvents


mRP-C18 high-recovery protein column, 4.6 x 50 mm, 5188-5231

mRP-C18 High-Recovery Protein Columns

Description	Protein Load Capacity	Part No.
mRP-C18, 0.5 x 100 mm	10 ng-5 µg	5188-6510
mRP-C18, 2.1 x 75 mm	8-85 µg	5188-6511
mRP-C18, 4.6 x 50 mm	40-380 µg	5188-5231

Protein fractionation of complex samples on the mRP column

mRP-C18, 4.6 x 50 mm

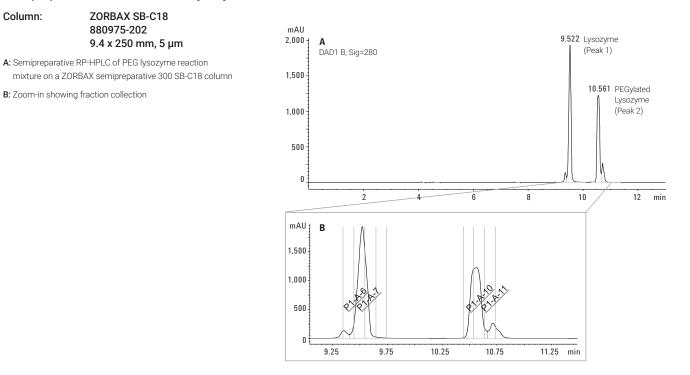
ZORBAX PrepHT

- Easy scale-up from analytical to preparative scale with ZORBAX phases
- Fast preparative separations, up to 2,000 mg
- 5 to 7 µm particles for high efficiency and high yield
- Easy to install finger-tight connections seal up to 5,000 psi/350 bar
- Use to maintain selectivity of the analytical phase in your prep separations

High purity, high recovery, and high throughput can be easily achieved with ZORBAX PrepHT columns. Available in a variety of bonded phases—StableBond 300 Å, C18, C8, C3, and CN—for optimized resolution and loadability under any conditions.

ZORBAX PrepHT columns are packed with 5 and 7 µm particle sizes for very high resolution. The high resolution allows high loadability, high yield, and high purity of compounds. The larger diameter columns and mechanically stronger ZORBAX particles allow for flow rates up to 100 mL/min, thus increasing throughput.

ZORBAX PrepHT columns are designed for rapid scale-up from analytical to preparative scale without losing resolution. For complex separations on larger columns (21.2 mm id, 150 mm length and longer), Agilent has carefully chosen the 7 µm particle size to achieve a balance between high efficiency and high loadability.



ZORBAX 300 Å StableBond Prep HT Cartridge columns

ZORBAX 300 Å StableBond

Description	Size (mm)	Particle Size (µm)	300SB-C18 USP L1	300SB-C8 USP L7	300SB-CN USP L10	300SB-C3 USP L56
PrepHT Cartridge Columns (requ	iire endfittings kit 8	20400-901)				
PrepHT cartridge	21.2 x 250	7	897250-102	897250-106	897250-105	897250-109
PrepHT cartridge	21.2 x 150	7	897150-102	897150-106		897150-109
PrepHT cartridge	21.2 x 150	5	895150-902	895150-906		895150-909
PrepHT cartridge	21.2 x 100	5	895100-902	895100-906		895100-909
PrepHT cartridge	21.2 x 50	5	895050-902	895050-906		895050-909
PrepHT endfittings, 2/pk			820400-901	820400-901	820400-901	820400-901
PrepHT guard cartridge, 2/pk	17.0 x 7.5	5	820212-921	820212-918	820212-924	820212-924
Guard cartridge hardware			820444-901	820444-901	820444-901	820444-901

Semipreparative RP-HPLC of PEG lysozyme reaction mixture

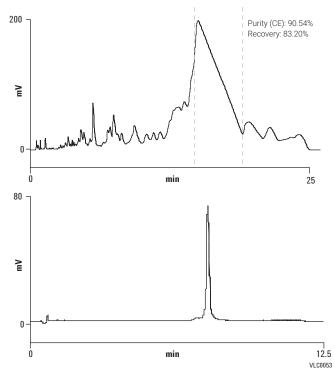
PLRP-S for prep to process

- Discovery stage to multi-kg CGMP production reduces method development time
- Chemical stability for separations, optimization, sanitation, and regeneration increases selectivity and column lifetime
- Single batch packing of multiple columns reduces system downtime and validation costs

The PLRP-S media, rigid poly(styrene/divinylbenzene) particles, are available in a range of pore sizes for small molecule, synthetic biomolecule, and macromolecule purification. Their thermal and chemical stability makes them ideal for purifications that require extreme conditions for sample preparation, compound elution, and column regeneration.

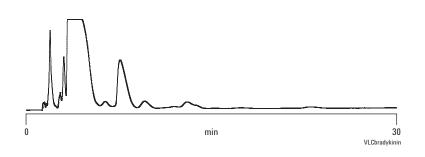
Capacity and resolution are two key parameters for maximizing the throughput of a purification. With a wide choice of pore sizes and extended range of operating conditions, PLRP-S provides more options to achieve the optimum process. Particle sizes range from 3 μ m to 50 μ m for scale-up from the μ g/mg discovery stage to multi-kg CGMP production. Excellent chemical stability, up to 1 M NaoH, permits sanitation and regeneration that increase column lifetime. PLRP-S media batch sizes of up to 600 L are available, providing single batch packing of multiple columns.

As part of our commitment to quality and continuity of supply, all manufacturing is carried out under a fully documented process, and facility audits are routinely conducted.

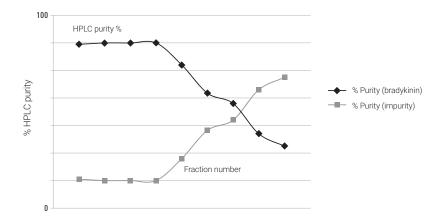

PLRP-S Prep to Process Application Guide

	PLRP-S Media Pore Size			
Application	100 Å	300 Å	1000 Å	4000 Å
Synthetic biomolecules, peptides, oligonucleotides	\checkmark	\checkmark		
Recombinant biomolecules, peptides, proteins	\checkmark	\checkmark		
Large biomolecules, antibodies, DNA fragments			\checkmark	\checkmark
Small molecules, unstable compounds including metal sensitivity	\checkmark			

UHPLC Column Specifications		
pH range	1–14	
Buffer content	Unlimited	
Organic modifier	1-100%	
Temperature limits	200 °C	
Maximum pressure	5–8 μm: 3,000 psi (210 bar)	
	3 μm: 4,000 psi (300 bar)	


Purification of a 25-mer trityl-off oligonucleotide and analytical quantitation of the fraction using PLRP-S 100 Å, 4.6 x 50 mm

Column:	PLRP-S 100 Å PL1512-1300 4.6 x 50 mm, 3 μm
Mobile phase:	A: 100 mM Triethylammonium acetate (TEAA) B: 100 mM TEAA in 25:75 Acetonitrile:water
Flow rate:	1 mL/min
Gradient:	25% B 0 min, 35% B 2 min, 45% B 22.5 min, 45% B 23 min, 25% B 23.05 min, 25% B 26 min
Temperature:	2° 08


Crude bradykinin prep load

Column:	PLRP-S 100 Å PL1512-5100 4.6 x 250 mm, 10 μm
Mobile phase:	0.1% TFA in 21% ACN:79% water
Flow rate:	1 mL/min (360 cm/h)
Sample:	30 μL containing 1.5 mg of crude peptide

Fraction analysis-the concentration overload purification

HPLC analysis of the fractions collected across the peak showed that fractions 1 to 4 contained only the peptide of interest and that the level of the critical impurity increased with increasing fraction number. Using the high efficiency PLRP-S column it was possible to obtain from the crude, 91.7% pure, a recovery of 97% with 100% purity. For more information, see application note 5990-7736EN.

Prep to Process PLRP-S

Size (mm)	Particle Size (µm)	PLRP-S 100 Å	PLRP-S 300 Å	PLRP-S 1000 Å	PLRP-S 4000 Å
100 x 300	30			PL1812-3102	PL1812-3103
100 x 300	15-20	PL1812-6200	PL1812-6201		
100 x 300	10-15	PL1812-6400	PL1812-6401		
100 x 300	10	PL1812-6100	PL1812-6101		
100 x 300	8	PL1812-6800	PL1812-6801		
50 x 300	8	PL1712-6800	PL1712-6801		
50 x 150	30			PL1712-3702	PL1712-3703
50 x 150	15-20	PL1712-3200	PL1712-3201		
50 x 150	10-15	PL1712-3400	PL1712-3401		
50 x 150	10	PL1712-3100	PL1712-3101	PL1712-3102	PL1712-3103
50 x 150	8	PL1712-3800	PL1712-3801		
25 x 300	15-20	PL1212-6200	PL1212-6201		
25 x 300	10-15	PL1212-6400	PL1212-6401		
25 x 300	10	PL1212-6100	PL1212-6101		
25 x 300	8	PL1212-6800	PL1212-6801		
25 x 150	30			PL1212-3702	PL1212-3703
25 x 150	10	PL1212-3100	PL1212-3101	PL1712-3102	PL1712-3103
25 x 150	8	PL1212-3800	PL1212-3801		
25 x 50	10			PL1212-1102	PL1212-1103
PLRP-S Meth	od Development Colur	nns			
4.6 x 250	30			PL1512-5702	PL1512-5703
4.6 x 250	15-20	PL1512-5200	PL1512-5201		
4.6 x 250	10-15	PL1512-5400	PL1512-5401		
4.6 x 250	10	PL1512-5100	PL1512-5101	PL1512-5102	PL1512-5103
4.6 x 250	8	PL1512-5800	PL1512-5801		
4.6 x 150	30			PL1512-3702	PL1512-3703
4.6 x 150	15-20	PL1512-3200	PL1512-3201		
4.6 x 150	10-15		PL1512-3401		
4.6 x 150	10	PL1512-3100	PL1512-3101	PL1512-3102	PL1512-3103
4.6 x 150	8	PL1512-3800	PL1512-3801		

PLRP-S Bulk Media

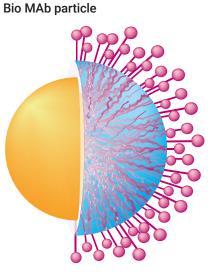
Particle Size (µm)	Unit	PLRP-S 100 Å	PLRP-S 300 Å	PLRP-S 1000 Å	PLRP-S 4000 Å
50	1 kg	PL1412-6K00	PL1412-6K01	PL1412-6K02	
	100 g	PL1412-4K00	PL1412-4K01	PL1412-4K02	
30	100 g			PL1412-4702	PL1412-4703
15-20	1 kg	PL1412-6200	PL1412-6201		
	100 g	PL1412-4200	PL1412-4201		
10-15	1 kg	PL1412-6400	PL1412-6401		
	100 g	PL1412-4400	PL1412-4401		
10	1 kg	PL1412-6100	PL1412-6101		
	100 g	PL1412-4100	PL1412-4101	PL1412-4102	PL1412-4103
8	1 kg	PL1412-6800	PL1412-6801		

Custom column and bulk media ordering. If you do not see the combination of pore size/particle size and column dimension or the bulk media quantity you require in these tables, contact your local sales office for assistance with our custom ordering process.

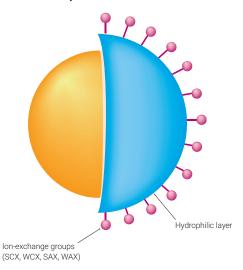
Tips and tools

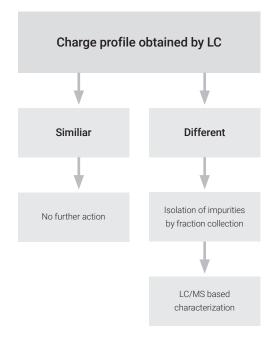
Column user guides are excellent resources, with instructions for use and column care, as well as suggested starting methods:

www.agilent.com/chem/biolc-columns-user-guides


Bio MAb and Bio IEX

Analytical to high efficiency prep


- Nonporous particle to eliminate mass transfer and provide highest efficiency to purify even closely related impurities
- Five functionalities: SAX, WAX, SCX, WCX, and a CX optimized specifically for mAbs to provide maximum resolution for increased sample load
- Scale-up from analytical to semiprep and prep with the same 5 µm particle


The outer hydrophilic layer on these particles reduces nonspecific interaction and delivers high sample recovery.

With analytical, semiprep, and prep columns packed with the same 5 µm particles, any unexpected charge variant seen during process development of a biopharmaceutical can quickly be purified for further characterization and identification.

Bio IEX particle

Bio MAb HPLC Columns

Size (mm)	Particle Size (µm)	Part No.
21.2 x 250	5	5190-6885
10 x 250	5	5190-6884

Bio IEX HPLC Columns, Stainless Steel

Size (mm)	Particle Size (µm)	Bio SCX Part No.	Bio WCX Part No.	Bio SAX Part No.	Bio WAX Part No.
21.2 x 250	5	5190-6879	5190-6881	5190-6883	5190-6877
10 x 250	5	5190-6878	5190-6880	5190-6882	5190-6878

Tips and tools

You can connect your Agilent BioHPLC column with InfinityLab Quick Connect fittings and metal-free bio-inert capillaries.

Learn more: www.agilent.com/chem/5991-7469EN

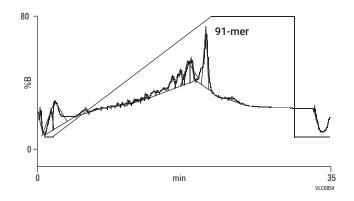
PL-SAX and PL-SCX for prep to process

- Ion-exchange purifications over a wider pH range extend applications
- HPLC flow rates and rapid equilibration reduce purification cycle times
- Large pore size for improved mass transfer delivers high speed, high resolution purifications

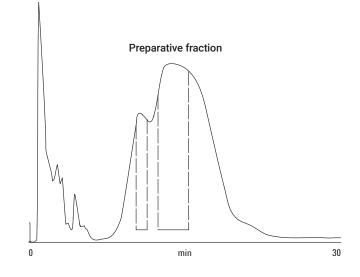
These rigid, strong ion-exchange materials are extremely hydrophilic and are designed for purification of biomolecules. The PL-SAX and PL-SCX materials are totally polymeric and are chemically and thermally stable over a full range of HPLC conditions. The strong ion-exchange functionalities, covalently linked to a chemically stable polymer, facilitate ion-exchange purifications over a wider pH range. This stability can be exploited for column sanitation and cleanup. Thermal stability also enables the use of denaturing conditions and stabilizing/ solubilizing agents for the purification of target compounds, as encountered in the purification of synthetic oligonucleotides with self-complementary sequences.

Both the 1000 Å and 4000 Å wide-pore materials are mechanically stable and robust and can be operated over a wide range of linear velocities, with fast loading of dilute solutions and wash cycles. HPLC flow rates, and rapid equilibration reduce purification cycle times.

Packing in dynamic axial compression (DAC) column hardware is straightforward and high efficiency columns are achieved with excellent reproducibility and lifetimes. The 1000 Å pore size is for high-capacity purifications and the 4000 Å gigaporous particles with improved mass transfer are intended for large biomolecules and high speed, high resolution purifications.



UHPLC Column Specifications	;	
	PL-SAX	PL-SCX
Matrix	Fully polymeric	Fully polymeric
Pore sizes	1000 Å, 4000 Å	1000 Å, 4000 Å
Particle sizes	10 µm, 30 µm	10 μm, 30 μm
Bead form	Rigid spherical	Rigid spherical
Functionality	Quaternary amine	Sulfonic acid
Pressure stability	3,000 psi	3,000 psi
Temperature stability	80 °C	80 °C
pH range	1-14	1–14
Eluent compatibility	All anion-exchange buffers	All cation-exchange buffers
Packed bed density	0.39 g/mL	0.39 g/mL


Purification of a large oligonucleotide

Column:	PL-SAX 1000 Å, 8 μm
Mobile phase:	A: 93% 100 mM TEAA, pH 7:7% Can B: 93% 100 mM TEAA, 3.24 M ammonium acetate, pH 7:7% ACN
Flow rate:	1.5 mL/min
Gradient:	0-100% B in 20 min
Temperature:	60 °C
Detector:	UV, 290 nm

Preparative fractionation of a culture filtrate containing amyloglucosidases

Column:	PL-SAX 4000 Å PL1551-1803 4.6 x 50 mm, 8 μm
Mobile phase:	A: 10 mM tris HCL, pH 8 B: A + 500 mM NaCl, pH 8
Flow rate:	4.0 mL/min
Gradient:	Linear 0–100% B in 2 min
Temperature:	60 °C
Detector:	UV, 280 nm

Prep to Process PL-SAX and PL-SCX

Dimensions	Particle Size (µm)	PL-SAX 1000 Å	PL-SAX 4000 Å	PL-SCX 1000 Å	PL-SCX 4000 Å
50 x 150	30	PL1751-3702	PL1751-3703	PL1745-3702	PL1745-3703
50 x 150	10	PL1751-3102	PL1751-3103	PL1745-3102	PL1745-3103
25 x 150	30	PL1251-3702	PL1251-3703	PL1245-3702	PL1245-3703
25 x 150	10	PL1251-3102	PL1251-3103	PL1245-3102	PL1245-3103
25 x 50	10	PL1251-1102	PL1251-1103	PL1245-1102	PL1245-1103
7.5 x 150	8	PL1151-3802	PL1151-3803		
7.5 x 50	8	PL1151-1802	PL1151-1803	PL1145-1802	PL1145-1803
PL-SAX and PL	-SCX Method Develop	ment Columns			
4.6 x 250	30	PL1551-5702	PL1551-5703	PL1545-5702	PL1545-5703
4.6 x 250	10	PL1551-5102	PL1551-5103	PL1545-5102	PL1545-5103
4.6 x 150	30	PL1551-3702	PL1551-3703	PL1545-3702	PL1545-3703
4.6 x 150	10	PL1551-3102	PL1551-3103	PL1545-3102	PL1545-3103

Prep to Process PL-SAX and PL-SCX columns and bulk media

PL-SAX and PL-SCX Bulk Media

Particle Size (µm)	Unit	PL-SAX 1000 Å	PL-SAX 4000 Å	PL-SCX 1000 Å	PL-SCX 4000 Å
30	100 g	PL1451-4702	PL1451-4703	PL1445-4702	PL1445-4703
10	100 g	PL1451-4102	PL1451-4103	PL1445-4102	PL1445-4103

Custom column and bulk media ordering. If you do not see the combination of pore size/particle size and column dimension or the bulk media quantity you require in these tables, contact your local sales office for assistance with our custom ordering process.

Peptide purification

VariTide is a cost-effective solution for the production of synthetic peptides. This column lets you manage the cost and efficiency of high-volume synthetic peptide purification, from µg to g scale. VariTide provides a solution for peptide houses that manufacture small quantities of hundreds or thousands of peptides where manufacturing time is the economic driving force.

VariTide RPC columns for synthetic peptides

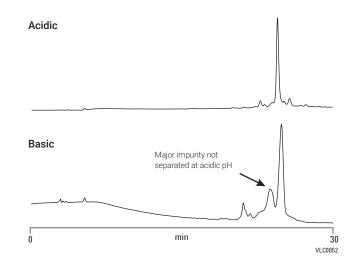
- A single column to cover the full range of synthetic peptides
- Small particle size for maximum efficiency, even with 1 and 2 in prep columns
- Bulk media to pack 1 and 2 in prep columns for the purification of mg to g quantities

VariTide RPC columns and media are part of the VariPep peptide solution. This is the recommended option for cost-effective separation and purification of synthetic peptides using generic methods.

VariTide RPC Columns for Synthetic Peptides

Size (mm)	Part No.
21.2 x 250	PL1E12-5A05
10.0 x 250	PL1012-5A05
4.6 x 250	PL1512-5A05

VariTide RPC Bulk Media


Description	Part No.
100 g	PL1412-4A05
1 kg	PL1412-6A05

VariTide RPC columns

Crude peptide screen

Column:	VariTide RPC PL1512-5A05 4.6 x 250 mm
Mobile phase:	Acidic A: 0.1% TFA in 95% water: 5% ACN B: 0.1% TFA in 50% water: 50% Can Basic A: 5% ACN, 95% 20 mM ammonium carbonate, pH 9.5 B: 50% ACN, 50% 20 mM ammonium carbonate, pH 9.5
Flow rate:	1.0 mL/min (360 cm/h)
Gradient:	0-100% B in 30 min
Detector:	UV, 220 nm

VariPure IPE

- Prepacked for convenience
- Removal of ion-pairing agents for improved productivity
- High performance and economy for excellent efficiency

VariPure IPE is a polymer-supported quaternary-amine resin with a bicarbonate counter ion, designed for removing acidic ion-pair reagents, such as trifluoroacetic acid (TFA), formic acid, or acetic acid. VariPure IPE is a high performance and economical acid-removal material conveniently supplied as prepacked SPE type devices. The particle size, capacity, and device geometry are matched to provide sufficient residence time to achieve effective ion-air extraction under gravity flow. For acid-labile peptides, removal of the ion-pairing agent prevents acid degradation of the peptide during post-HPLC work-up, and increases the yield of purified product

VariPure IPE

Loading	Counter-ion Removal Capacity	Unit	Part No.
100 mg per 3 mL tube	~5 mL 0.1% TFA	50/pk	PI3540-d603VP
500 mg per 6 mL tube	~25 mL 0.1% TFA	50/pk	PI3540-C603VP
1 g per 20 mL tube	~50 mL 0.1% TFA	25/pk	PI3540-P603VP
25 g			PI3549-3603VP

Load & Lock preparative HPLC columns

Agilent offers a complete range of laboratory scale Load & Lock columns and the Mobile Packing Station. Designed to let you easily and quickly pack your own preparative highefficiency columns, this is the right solution for development applications of pharmaceutical compounds, peptides, and natural products. Our Load & Lock columns have a unique fluid/ sample distribution system to maximize productivity. This improves column performance by diffusing the sample more efficiently over the complete bed surface.

- Highest performance: achieve superior results with a unique flow distribution system
- Maximum flexibility: all the 1 inch, 2 inch, and 3 inch Load & Lock columns conveniently use the same mobile packing station and perform both Dynamic Axial Compression (DAC) or Static Axial Compression (SAC)
- Greater convenience: pack or unpack your column in a few minutes
- Maximum mobility: column and packing station are combined in one easy-to-move skid, wherever it's needed

Dual mode packing formats ensure easy operation and the delivery of consistent, high-performance results by using the DAC or SAC mode.

Agilent laboratory scale Load & Lock columns combine excellent packed-bed stability with enhanced flow distribution to deliver the highest quality purification possible with maximum speed, flexibility, and ease of operation.

Requiring only compressed air, the Load & Lock packing station uses no power supply, making it safe to use with any type of solvent and the solution of choice for hazardous environments. The quick-release single-bolt clamp offers speedy and easy packing and unpacking within minutes.

Load & Lock Preparative HPLC Columns

Description	Water Jacket	Size (mm)	Part No.
Load & Lock column	No	27.0 x 500	PCG93LL500X25
	Yes	27.0 x 500	PCG93LL500X25WJ
	Spare parts kit		PCG931AAKIT
Mobile packing station (air-driven hydraulic)			PCG93LLSTAND123

Bio SEC

Purification based on size

- Six pore sizes to provide size separations across the range of biopharmaceuticals
- Scale-up from 3 μm , and 5 μm analytical columns to lab prep with the same particles
- The thin hydrophilic polymer layer minimizes nonspecific interactions and provides good peak shapes and increased sample capacity

These silica based SEC materials have optimized pore sizes and pore volume to provide high resolution separations under HPLC conditions of pressure and flow rate. The 3 μ m particles with 100 Å, 150 Å, and 300 Å pore sizes provide highest efficiency for lab prep, and the 5 μ m particles provide a wide range of pore sizes for fractionation of larger biomolecules and conjugates.

Tips and tools

Column user guides are excellent resources, with instructions for use and column care, as well as suggested starting methods:

www.agilent.com/chem/biolc-columns-user-guides

Size (mm)	Particle Size (µm)	Bio SEC-5 100 Å USP L33	Bio SEC-5 150 Å USP L33	Bio SEC-5 300 Å USP L33
21.2 x 300	3	5190-6850	5190-6851	5190-6852
Prep guards				
21.2 x 50	3	5190-6854	5190-6855	5190-6856

Bio SEC-3 HPLC Columns for Faster Peptide and Protein Separations

Bio SEC-5 HPLC Columns for Size-Based Biomolecules

Size (mm)	Particle Size (µm)	Bio SEC-5 100 Å USP L33	Bio SEC-5 150 Å USP L33	Bio SEC-5 300 Å USP L33	Bio SEC-5 500 Å USP L33	Bio SEC-5 1000 Å USP L33	Bio SEC-5 2000 Å USP L33
21.2 x 300	5	5190-6863	5190-6864	5190-6865	5190-6866	5190-6867	5190-6868
Prep guards							
21.2 x 50	5	5190-6869	5190-6870	5190-6871	5190-6872	5190-6874	5190-6875

Agilent Solutions

Put more than 40 years of relentless innovation behind your every result

Agilent offers a comprehensive portfolio of innovative solutions—from improving lab productivity for chemical analysis, to vacuum systems, to workflow solutions developed to facilitate unlocking the complexities of living systems. We help you stay current with emerging applications and approved methods, while our integrated workflow solutions deliver accurate, comprehensive data helping you make informed decisions accelerating your time to results.

Customers who have been with Agilent for a long time have experienced our commitment firsthand. Now, we look forward to demonstrating how our approach to relentless innovation can work to your advantage, too.

Academia

Through our commitment to achievement that spans international borders and scientific disciplines, we strive to help researchers build momentum with their research and gain greater recognition as meaningful contributors in their field.

Biologics and biosimilars

Biotherapeutics have enormous potential to improve human health. The number of approved protein and antibody therapeutics continues to grow around the world as this important therapeutic class addresses unmet medical needs.

Cell metabolism

Understanding cellular metabolism is critical to understanding many cellular processes. With Agilent you can analyze metabolism in live cells, in real time, and generate the most physiologically relevant data.

Geochemistry, mining and metals

Whether determining major or trace analytes, determining gold, silver and platinum elements, analyzing plating solutions, or performing geochemical mapping, Agilent provides ease-of-use and reliable analysis instruments required for the most refined and the most difficult samples.

Homeland security

If you are involved in the detection of Chemical Warfare Agents (CWA), Biological Warfare Agents (BWA), Toxic Industrial Chemicals (TIC), or in the monitoring of food, air, soil, and water, Agilent has a fast, flexible and reliable solution to meet your needs.

Materials testing and research

Agilent provides you the ability to identify the nature and source of undesired odors in finished goods, characterize microcrystalline irregularities in composites, and quantify trace impurities in metal alloys.

Clinical research

With our comprehensive portfolio of industry-leading LC/MS, GC/MS, and ICP-MS instruments as well as our RapidFire and sample preparation automation offerings, Agilent can help you take advantage of the growing world of MS analysis in clinical research.

Energy and chemicals

Agilent has custom methods and solutions for your specific needs to achieve the highest productivity and profitability for your lab, while meeting the industry's stringent regulatory requirements.

Environmental

Agilent offers reliable and efficient environmental analysis and regulatory expertise. May it be contaminants in waste water, purity of drinking water, measuring indoor air quality, responding to natural or man-made disasters, or identifying emerging contaminants.

Food testing and agriculture

The food and agriculture industry faces ever-increasing demands for more sensitive, productive analytical solutions. Our instruments, systems, and supplies are used throughout the food production chain. Agilent develops systems and applications that meet the latest requirements.

Forensics

Whether testing for poisons, drug screening, analyzing recreational drugs, or checking a crime scene for explosive residue - Agilent Technologies leads the industry with robust instruments that provide the ability to confirm and quantify thousands of substances.

Genomics

Whether you are using gene expression, cloning and quantitative PCR, comparative genomic hybridization to detect copy number variation, or selecting for the human exome to sequence regions of interest, Agilent provides the innovation and reliability your research requires.

Metabolomics

Agilent metabolomics solutions are used for disease research, analytical toxicology, environmental analysis, agriculture, biofuel development, and nutrition. Metabolomics results are combined with gene expression and/or proteomics studies to provide a comprehensive understanding of the biology.

Proteomics

Proteomics studies structure and function of proteins, and their interactions within a complex biological system. Protein analysis represents many challenges, your proteomics research goals need to be met by complete, optimized and accessible workflows for fast, accurate and reproducible results.

Semiconductor analysis

Agilent analytical instruments offer the highest performance for trace element analysis across the range of samples in the semiconductor industry, including silicon wafers by surface metal extraction (SME), solar PV silicon, high purity process chemicals, ultrapure water, organic solvents, and photoresists.

Small molecule pharmaceuticals

The pharmaceutical industry faces constant challenges, as business, science, and regulatory pressures evolve and collide. From personalized medicine, to CROs, the process of bringing drugs to market today is dramatically different than it was ten years ago.

Specialty chemicals

Agilent's portfolio of instruments, accessories, support and supplies—along with our large, diverse network of Channel Partners—means we can help you solve virtually any measurement problem you might face.

Vacuum solutions

Understanding your vacuum needs is critical in providing solutions that are reliable and enhance your productivity. With Agilent Technologies by your side, you discover the solid scientific expertise and creativity we possess in developing tailored solutions for your needs.

Tips and tools

To find out more, visit: www.agilent.com/en/solutions

Agilent CrossLab Services

Maximize uptime with end-to-end support

Trust Agilent CrossLab service experts to deliver valuable insights and keep your instruments running at top performance. Our industry-leading services—tailored to meet your needs—include Technology Refresh, application consulting, repairs, preventive maintenance, compliance verification, and education. Ask us how we can support your laboratory today.

Agilent CrossLab service plans

Protect against costly repairs and downtime

Today's labs face complex challenges that require the support of a true service partner. Agilent CrossLab service plans maximize your lab's productivity and keep your operations running smoothly, day after day. Whatever your laboratory configuration, we can provide the level of support that best meets your needs and budget.

Agilent compliance services

Equipment qualification that meets the most stringent requirements

Enterprise Edition Compliance was developed to streamline qualification delivery compliance across your entire lab. Used worldwide in regulated labs, including standards organizations and regulatory agencies, Enterprise Edition enables you to:

- Improve qualification efficiency by harmonizing protocols across platforms to ensure greater efficiency and minimize regulatory risk
- Standardize your compliance operation with robust test designs that work with all of your instruments
- Add, remove, or reconfigure tests based on your unique user requirements
- Reduce staff review time with consistently formatted, computer generated, tamper-proof reports

Get the Agilent service guarantee

Should your instrument require service while covered by an Agilent service agreement, we guarantee repair or we will replace your instrument for free.

No other company offers this level of commitment to keep your lab up and running at peak efficiency.

Agilent Services and Support

Agilent University

Get the knowledge you and your team need to succeed

Keeping skill levels high is a challenge, and directly impacts instrument uptime, lab productivity, and analytical accuracy. Agilent University offers comprehensive learning opportunities—from beginner-level courses to advanced classes—for every member of your team via defined learning paths.

The Agilent Value Promise–10 years of guaranteed value

Extended services

The Agilent Value Promise guarantees at least 10 years of instrument life with 7 years of guaranteed support. CrossLab Extended Services provide customers with aging instruments consistent diagnostic, repair, maintenance, and education service quality. CrossLab Extended Services are delivered by Agilent engineers using the latest tools, procedures, and genuine Agilent parts.

For more detailed information, please contact your local Agilent services and support representative, or visit: www.agilent.com/chem/extended-services

Technical support at work for you

Have a hardware, software, application, instrument repair, or troubleshooting question? Agilent's technical experts are available to answer your questions. With years of laboratory experience, our technical support specialists can provide in-depth knowledge and experience.

For questions about supplies found in this catalog, contact your local Agilent office or authorized Agilent distributor, or visit: **www.agilent.com/chem/techsupport**

Agilent Community

Connect, collaborate, and share perspectives

The Agilent Community is the best place to collaborate with colleagues about applications, discuss Agilent products, and find in-depth content relevant to your analysis. Visit: **community.agilent.com**

Contact us: www.agilent.com/chem/contactus

Buy online:

www.agilent.com/chem/store

Get social with Agilent: www.agilent.com/chem/social

Explore our full range of catalogs: www.agilent.com/chem/catalog

For Research Use Only. Not for use in diagnostic procedures.

This information is subject to change without notice.

© Agilent Technologies, Inc. 2019 Published in the USA, June 11, 2019 5994-0974EN

