

Premium Syringe Filters

- **More choices**. Captiva syringe filters are available in many sizes, formats, and membranes to cover every matrix and sample.
- **Certified**. All products are supplied with an HPLC or LC/MS certificate, guaranteeing extremely low levels of observed extractables.
- **Exceptional flow rate**. Captiva syringe filters have excellent flow rates and maximum sample loading capacity.
- **Highest quality**. Agilent Captiva syringe filters are constructed with the highest-grade virgin polypropylene housing, and are securely welded to prevent bursting and ensure sample integrity.

Sample filtration before HPLC, LC/MS, UHPLC, CE, and ICP-MS analysis is critical to achieving optimal system performance, and Agilent Captiva premium syringe filters make the process faster than ever with the industry's highest flow rates and loading capacities. All syringes are HPLC or LC/MS certified to guarantee low levels of observed extractables. PES (part numbers 5190-5094, 5190-5095,5190-5096, and 5190-5098) and glass fiber (p/n 5190-5120) premium syringe filters are LC/MS certified to be free of extractables.

Choose from a variety of membranes to suit your needs.

<section-header><section-header></section-header></section-header>		
Aglent Part No: 5 to to oble of anni, 5100 oblig Talmi, 5100 oblig	CENTIFICATE OF A	NALYSIS
ALGES Practice ALGES ALGES Practice ALGES		
Transformer Holder Article State St	LC-MS Results for Agilent Captiva Premium Syringe Filter	r: PES 0.2µm
	Area and a second	Column Scholar Using Frag. (21 BBYO) 21 Lin String Lin Jan Virkel 317-7022 21 Lin String Lin Jan Virkel 317-7022 Bio March 2015 String Lin Jan Virkel 317-80 Bio March 2015 String Lin Jan Virkel 317-80 March 2015 String Lin Jan Virkel 317-80 String Lin March 211, Virkel 318-80 March 2015 String Lin Jan Virkel 317-80 String Lin March 211, Virkel 318-80 March 2015 String Lin Jan Virkel 317-80 String Lin March 211, Virkel 318-80 March 2015 String Lin Jan Virkel 317-80 String Lin March 211, Virkel 318-80 String Lin March 2118-80 St
	For product performance specifications, please are the Product insert or vis	Hernelitelaen/Ities/Minter
For product performance operifications, please use the Product inset or visit even address and integrit Manham		il hante

Premium Filters, 100/pk

Description	Diameter (mm)	Pore Size (µm)	Certification	Housing	Part No.
PTFE	4	0.2	LC	Polypropylene	5190-5082
	4	0.45	LC	Polypropylene	5190-5083
	15	0.2	LC	Polypropylene	5190-5084
	15	0.45	LC	Polypropylene	5190-5085
	25	0.2	LC	Polypropylene	5190-5086
	25	0.45	LC	Polypropylene	5190-5087
Nylon	15	0.2	LC	Polypropylene	5190-5088
	15	0.45	LC	Polypropylene	5190-5091
	25	0.2	LC	Polypropylene	5190-5092
	25	0.45	LC	Polypropylene	5190-5093
PES	4	0.2	LC/MS	Polypropylene	5190-5094
	4	0.45	LC/MS	Polypropylene	5190-5095
	15	0.2	LC/MS	Polypropylene	5190-5096
	15	0.45	LC	Polypropylene	5190-5097
	25	0.2	LC/MS	Polypropylene	5190-5098
	25	0.45	LC	Polypropylene	5190-5099
Regenerated	4	0.2	LC	Polypropylene	5190-5106
Cellulose	4	0.45	LC	Polypropylene	5190-5107
	15	0.2	LC	Polypropylene	5190-5108
	15	0.45	LC	Polypropylene	5190-5109
	25	0.2	LC	Polypropylene	5190-5110
	25	0.45	LC	Polypropylene	5190-5111
Cellulose	28	0.2	LC	MBS	5190-5 116
icetate	28	0.45	LC	MBS	5190-5117
ilass	15	0.7	LC/MS	Polypropylene	5190-5120
nicrofiber	28	0.7	LC	MBS	5190-5122

TIPS AND TOOLS

Our syringe filter online selection guide makes it fast and easy to choose the best syringe filter for your application.

Try it now at: www.agilent.com/chem/SelectFilters

Layered Filters with Prefilter

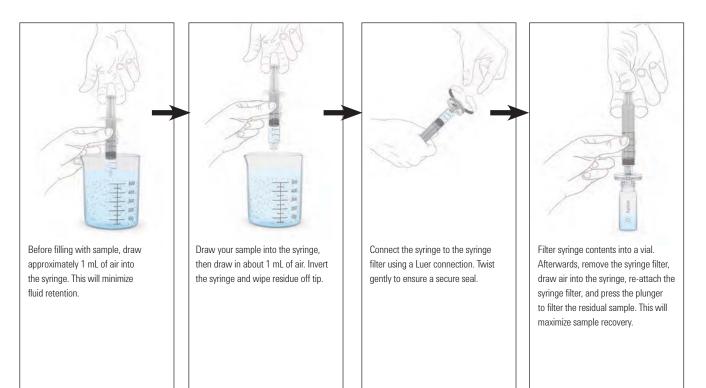
Layered Filters, 100/pk

Lł

Captiva disposable syringe, 5 mL, 9301-6476

Description	Diameter (mm)	Pore Size (µm)	Certification	Housing	Part No.
	15	0.2	LC	Polypropylene	5190-5126
	15	0.45	LC	Polypropylene	5190-5127
Glass Microfiber/PTFE	25	0.2	LC	Polypropylene	5190-5128
	25	0.45	LC	Polypropylene	5190-5129
	15	0.2	LC	Polypropylene	5190-5132
Class Misrofiker /Nulse	15	0.45	LC	Polypropylene	5190-5133
Glass Microfiber/Nylon	25	0.2	LC	Polypropylene	5190-5134
	25	0.45	LC	Polypropylene	5190-5135

Captiva disposable syringe, 10 mL, 9301-6474


Captiva disposable syringe, 20 mL, 5190-5103

Captiva Disposable Syringes, 100/pk

Volume (mL)	Part No.
5	9301-6476
10	9301-6474
20	5190-5103

Step-by-step Instructions

Follow these steps to realize the full benefits of filtration

WARNING

Use caution with syringes smaller than 10 mL. They can easily generate enough power to burst the syringe filter. Agilent syringe filters are for laboratory use only.

Prewetting the filter, while not necessary, can be performed as an extra step.

Premium Syringe Filter Chemical Compatibility

Learn more about Agilent Captiva filtration products at www.agilent.com/chem/filtration

Legend Compatible •• Limited compatibility • Not compatible - Not analyzed N/A	Polypropylene membrane	Polyethersulfone membrane	Cellulose Acetate membrane*	Polytetrafluorethylene membrane	Regnerated Cellulouse membrane	Nylon membrane	Glass Fiber membrane*	Housing Methyacrylate Butadiene Styrene	Housing Polypropylene
Filter	PP	PES	CA	PTFE	RC	Nylon	GF		
Housing								MBS	PP
Solvents									
Acetone	••	-	-	••	••		••	-	
Acetonitrile	•	-	-	••	••	N/A	••	-	••
Benzene	-	-	•	••	••			—	••
Benzyl alcohol	••	-	—	••	••			—	•
n-Butyl acetate	N/A	-	-	••	••			—	
n-Butanol	••	•	•	••	••	••	••	••	
Carbon tetrachloride	•	-	-	••	••	••	••	-	-
Chloroform	•	-	-	••	••	••	••	-	
Cyclohexane	••	-	•	••	••	••	••	•	•
Diethylacetamide	••	-	-	••	••	••	••	-	
Diethyl ether	•	-	•	••	••	••	••	-	
Dimethyl formamide	••	-	-	••	•	•	••	—	•
Dimethylsulfoxide	••	-	-	••	••	••	••	-	
Dioxane	•	-	-	••	••	••	••	-	
Ethanol, 98%	••	••	•	••	••	••	••	-	•
Ethyl acetate	•	-	-	••	••	••	••	-	•
Ethylene glycol	••	••	•	••	••	••	••	••	
Formamide	N/A	••	-	••	•	••	••	••	
Gasoline	•	•	•	••	••	••	••	••	••
Glycerin	••	••	•	••	••	••	••	•	•
n-Heptane	-	••	•	••	••		••	•	
n-Hexane	-	••	•	••	••	••	••	•	•
lsopropanol	••	••	•	••	••	••	••	—	••
lsopropyl acetate	N/A	_	-	••	••	••	••	-	
Methanol, 30 %	••	••	N/A	••	••	••	••	••	
Methanol, 98 %	••	•	-	••	••	••	••	••	•
Methyl acetate	•	_	-	••	••	••	••	_	•
Methylene chloride	•	-	-	••	••		••	-	••

*CA and GF membranes in MBS housing for 28 mm size.

Contact time: 24 hours at 20 °C.

Chemical compatibilities can be influenced by various factors. Therefore, we recommend that you confirm compatibility with the liquid you want to filter by performing a trial filtration run before you start your actual filtration.

Legend Compatible ••		one	tate	Polytetrafluorethylene membrane	Regnerated Cellulouse membrane	ane		Housing Methyacrylate Butadiene Styrene	
Limited compatibility •	Polypropylene membrane	Polyethersulfone membrane	Cellulose Acetate membrane*	fluor	ed C	Nylon membrane	<u>e</u> e	ylatu e Sty	Housing Polypropylene
Not compatible –	bran	ether bran	llose bran	etra	erat	e me	s Fib bran	ing yacı dien	ing propy
Not analyzed N/A	Polypropyle membrane	Polyetherst membrane	Cellulose Ac membrane*	Polytetraflu membrane	Regnerated membrane	Vyloi	Glass Fiber membrane*	Housing Methyac Butadien	Hous
Filter	PP	PES	CA	PTFE	RC		GF		
Housing								MBS	PP
Solvents									
Methyl ethyl ketone	•	_	_	••	••			_	•
Methyl isobutyl ketone	•	_	_	••	••	••		_	•
Monochlorobenzene		_	_		••			•	
Pyridine	•	_	_		••			_	
Tetrahydrofuran	••	_	_		••			_	
Toluene	-	_	•		••			_	
Trichloroethane	N/A	-	_	••	••			_	N/A
Xylene	-	_	•	••	••			_	•
Acids									
Acetic acid, 25 %	••	•	•	••	••	_	••	-	•
Acetic acid, 80 %	••	N/A	_	••	••	_	••	_	•
Hydrochloric acid, 20%	••	••	_	••	_	_	••	•	•
Hydrofluoric acid, 25 %	••	•	_	••	•	_	••	•	•
Nitric acid, 25 %	••	•	_	••	_	_	••	•	•
Phosphoric acid, 1 %	••	••	•	••	_	_	••	•	•
Sulfuric acid, 25 %	••	•	-	••	•	-	••	•	••
Trichloroacetic acid, 10 %	••	N/A	-	••	••	_		-	•
Bases					-				
Ammonium hydroxide, 25 %	••	•	•	••	•	•	•	-	•
Sodium hydroxide, 1N	••	••	-	••	•	•	•	-	••
Aqueous solutions									
Formalin, 30 %	••	•	••	••	•	••	••	•	•
Hydrogen peroxide, 30 %	••	••	-	••	—	-		•	
Sodium hypochlorite, 5 %	N/A	••	-	••	-	-	••	•	•
pH range									
рН 1-14	••	-	-	••	-	-	••	-	
рН 1-13	••	••	-	••	-	-	••	-	••
рН 3-14	••	•	-	••	•	••	••	-	••
рН 3-12	••	••	-	••	••	••	••	•	••
pH 4-8	••	••	••	••	••			••	••

 $^{\ast}\text{CA}$ and GF membranes in MBS housing for 28 mm size.

Contact time: 24 hours at 20 °C.

Chemical compatibilities can be influenced by various factors. Therefore, we recommend that you confirm compatibility

with the liquid you want to filter by performing a trial filtration run before you start your actual filtration.

Econofilters, PES, 5190-5272

Econofilters

High-quality Econofilters are shipped in large packs and are ideal for busy labs that need fast, efficient filtration at a reasonable price.

Econofilters, 1000/pk

Econofilters

Description	Diameter (mm)	Pore Size (µm)	Housing	Part No.
PVDF	13	0.2	Polypropylene	5190-5261
	13	0.45	Polypropylene	5190-5262
	25	0.2	Polypropylene	5190-5263
	25	0.45	Polypropylene	5190-5264
PTFE	13	0.2	Polypropylene	5190-5265
	13	0.45	Polypropylene	5190-5266
	25	0.2	Polypropylene	5190-5267
	25	0.45	Polypropylene	5190-5268
Nylon	13	0.2	Polypropylene	5190-5269
	13	0.45	Polypropylene	5190-5270
	25	0.2	Polypropylene	5190-5271
	25	0.45	Polypropylene	5190-5272
PES	13	0.2	Polypropylene	5190-5273
	13	0.45	Polypropylene	5190-5274
	25	0.2	Polypropylene	5190-5275
	25	0.45	Polypropylene	5190-5276
Polypropylene	13	0.2	Polypropylene	5190-5277
	13	0.45	Polypropylene	5190-5278
	25	0.2	Polypropylene	5190-5279
	25	0.45	Polypropylene	5190-5280
	25	0.45	Polypropylene	5190-5307
Regenerated cellulose	15	0.45	Polypropylene	5190-5308
(RC)	25	0.2	Polypropylene	5190-5309
	15	0.2	Polypropylene	5190-5310

TIPS AND TOOLS

Request your printed Captiva filtration slide and select guide at www.agilent.com/chem/syringe-filter-tool

Agilent Captiva Syringe Filter Selection Guide

Step 1	Aqueous All aqueous solu tissue culture/protein application small molecules/applications/ge	ns/large molecules		Solvents Hydrophilic aqueous/solvent mixtures/solvents hydrophilic solvent mixtures/solvents hydrophobic solvents/gases/acids/bases	
	PES Polyethersulfone pH Range 3-12				
	CA Cellulose Acetate pH Range 4-8	RC Regenerated Cellul pH Range 3-12	ose		
		NY Nylon pH Range 3-14			
				PTFE Polytetra-fluorethylene pH Range 1-14	

Sample Composition

Sample Volume

What is the Particle Size of your LC Column

Step 3	Columns packed <2 µm particles	Columns packed >2 µm particles
otep	0.2 μm UHPLC	0.2 or 0.45 µm HPLC

Type of Filtration	Recommended	Alternatives
HPLC • UHPLC • LC/MS • GC	RC	PTFE or Nylon
ICP-MS	PTFE	Glass Fiber/PTFE (High Particle Samples)
CE	RC	Nylon
Undiluted organic solvents	PTFE	Nylon
Protein analysis • samples with biomolecules—buffers	PES	RC or CA
Tissue culture media	PES	RC or CA
High particle-load samples—organic solvents	Glass Fiber/PTFE	
High particle-load samples—aqueous solutions	Glass Fiber/Nylon	
AA, ICP-OES, and MP-AES	PES	PTFE or Polypropylene

Applications

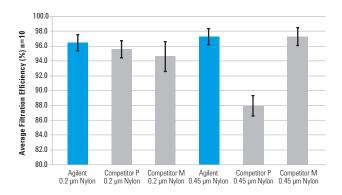
Proof of Performance: Filtration Efficiency

Testing Method

The surfactant solution, 0.1 % Triton X-100, was used to prepare 0.01 % Latex Beads (0.3 and 0.5 μ m) solution. The 0.1 % Triton X-100 was used to maintain the homogeneity of latex beads solutions.

Filtration

The challenging solution was passed through each individual syringe filter and a 1 mL filtrate was collected in a 2 mL vial for HPLC run. Ten different filters from each kind of filter were tested.

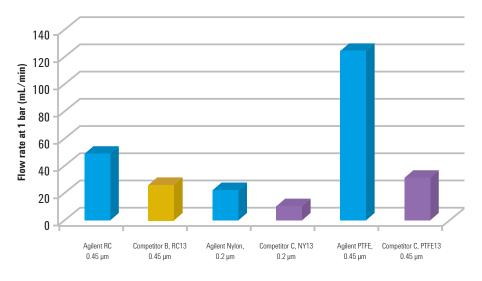

Filtrate measuring on HPLC/UV

The maximum absorbance of the latex beads solutions was observed at 272 nm, which was used to correlate latex bead concentration with absorbance. A simple HPLC method was used for automatic testing under UV 272 nm. No column was used. The mobile phase was water, and the flow rate of 1.0 mL/min was used.

An eluted peak at 272 nm was used for filtration efficiency calculation. Blank 0.1 % Triton X-100 was run to correct contributions from surfactant absorbance at 272 nm.

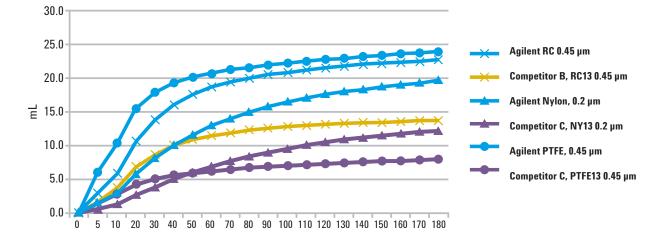
The Agilent Captiva syringe filters provide equivalent or better filtration efficiency than competitors' equivalent products for particulates removal

Average Filtration Efficiency of Agilent Captiva Syringe Filters vs. Competitors



Filtration efficiency	Filtration EFF (%) =	(PeakArea Unfiltered LBsolution - PeakArea Unfiltered Blank) (PeakArea Filtered LBsolution - PeakArea Filtered Blank)	_x 100%
(%) calculation		(PeakArea Unfiltered LBsolution - PeakArea Unfiltered Blank)	

Agilent premium 0.2 µm syringe filters					Agilent premium 0.45 µm syringe filters							
	Nylon	PTFE	RC	PES	GF/NY	GF/PTFE	Nylon	PTFE	PES	CA	GF/NY	GF/PTFE
1	96	92.3	89.8	92.1	99	99.4	95.2	97	93.6	92.4	96.8	98.4
2	95.9	91.4	90.6	91.4	99	98.9	93.2	96.5	93.6	95	97.1	98.8
3	94.5	93.3	90.3	89.5	99.2	99	95.5	97.5	93.5	96.3	96.4	97.7
4	96.6	92.3	91.7	99	99.6	98.6	95.4	96.6	88.5	97.2	99.3	98.8
5	95.4	91.2	92.4	96.3	98.8	98.8	94.9	96	88.2	96	99	99.7
6	95.6	91.1	90.8	99.9	99.3	98.5	95.3	95.7	92.3	95.6	100	96.8
7	99.9	91.1	98.2	99	99.4	99.4	99.5	95.2	94.9	96.7	98.2	97.6
8	99.8	91.2	99	97.8	95	99	98	97.8	89.4	93.8	98.9	98.5
9	99.7	90.9	96.4	95.2	95.9	99.9	97.7	94.9	87.3	92.5	100.2	98
10	99.2	91.3	95.7	96.1	94.7	99.6	99.7	94.8	87.5	92.8	100.5	101.3
Average Eff (%)	97.3	91.6	93.5	95.6	98	99.1	96.4	96.2	90.9	94.8	98.6	98.6
RSD (%)	2.2	0.8	3.7	3.7	2	0.5	2.2	1.1	3.3	1.9	1.5	1.3


Proof of Performance: Flow Rate and Volume Capacity

Agilent Captiva premium syringe filters provide unparalleled loading capacity with the fastest flow rates in the market today to allow for maximum efficiency.

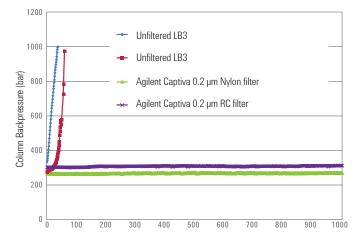
Flow rate for 15 mm premium syringe filters

Capacity (volume) of 15 mm syringe filters over time (with particulate-laden samples)

Filtration Impact on LC Column Life

Importance of Filtration

Column plugging is the most frequent cause of column failure encountered by analytical chemists. Injection of samples containing even small amounts of particulate will clog the column inlet, causing high column backpressure, retention time shift, and loss of resolution, which shortens the normal column lifetime. This impact can be more significant for sub-2 µm columns. These smaller particle size columns are usually used under high pressure, and are therefore more sensitive to pressure increases caused by the accumulated particulates on the column.

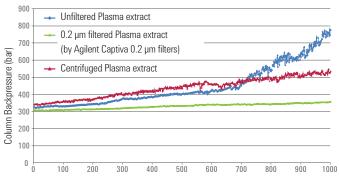


Testing Method

Sample Preparation

- A.) The surfactant solution, 0.002 % Triton X-100, was used to prepare 0.05 % latex bead (0.3 μm and 0.5 μm) solution.
- B.) Latex bead solution (0.3 μm) was used for sub-2 μm column life test. Unfiltered and filtered (by 0.2 μm filters) samples were used for comparison of impact on sub-2 μm column life.
- C.) Human plasma extract was used for sub-2 μm column life application test. Unfiltered, centrifuged, and filtered (by 0.2 μm filters) samples were used for comparison of impact on sub-2 μm column life. The sample was prepared using the following steps.
- 1. 2 mL of human plasma was aliquoted in to a test tube.
- 2. 10 mL of Acetonitrile with 1 % Acetic Acid was added.
- Sample was vortexed vigorously and then centrifuged at 4000 rpm for 5 min.
- 4. The supernatant was transferred into a clean test tube.
- 5. The supernatant was blown dry with N₂ flow at 37 °C.
- 6. The dried sample was reconstituted in 10:90 MeOH/H₂0, vortexed and sonicated.

Results—Filtration impact on sub-2 µm column A by latex bead 0.3 µm solution


Filtration

The challenging solution was passed through each individual syringe filter and a 1 mL filtrate was collected in a 2 mL vial for HPLC run.

UHPLC instrumentation (for sub-2 column life test)

Column:	Agilent ZORBAX Eclipse Plus C18 RRHD column, 2.1 x 50 mm, 1.8 μm, p/n 959757-902.
	Column was disconnected from the detector and allowed to run to drain.
Mobile phase:	Acetonitrile: Water (35:65, v/v)
Flow rate:	0.4 mL/min, isocratic.
Injections	10 μL per injection, one injection per minute.
Monitoring :	Column backpressure was recorded with the number of injections.
Column failure:	When column back pressure exceeded 1000 bar.
Sequence:	A 1000 injections sequence was usually used, unless the column failed in the middle due to high pressure. A new column was used for each individual sequence.
Conclusion:	Filtration before sample introduction into an HPLC system significantly improves column life time.

Results—Filtration impact on sub-2 µm column B by human plasma PPT extract

Number of injections of unfiltered, centrifuged, and filtered human plasma PPT Extract.