

Investigating the Effects of Chromatographic **Parameters on Column Equilibration in Isocratic and Gradient HILIC Separations**

Alan P McKeown¹, Ed Faden² and Geoff Faden²

¹Advanced Chromatography Technologies Ltd, 1 Berry Street, Aberdeen, Scotland, AB25 1HF UK ²MACMOD Analytical Inc., 103 Commons Court, PO Box 587, Chadds Ford, PA 19317 USA

1. Introduction

- > Hydrophilic Interaction Liquid Chromatography (HILIC) is a powerful technique for the separation of hydrophilic and polar compounds.
- > HILIC utilises a polar stationary phase and high-organic containing mobile phase.

- > The HILIC retention mechanism is complex and includes electrostatic, polar and partitioning interactions.
- The key to HILIC retention is formation of a water-enriched layer at the particle surface.

2. Experimental

- The three ACE HILIC phases (100 x 3.0 mm, 3 µm) were assessed in this study:
- > **HILIC-A** (An acidic stationary phase showing high cation exchange capability)
- > **HILIC-B** (A basic character phase with reasonable anion exchange capacity)
- > **HILIC-N** (A neutral bonded phase with low anion and cation exchange capabilities)
- **Isocratic equilibration:** The following parameters were assessed:

Parameter	Values assessed
Fresh vs used column	Freshly packed column vs previously used column
Mobile phase ionic strength	5, 10 and 20 mM ammonium formate pH 3.0
Percentage water in the mobile phase	6, 10, 15 and 20 % water

3.	Fresh	VS	Used	Columns

- Freshly packed columns were equilibrated with mobile phase for 400 column volumes. Sample injected every 10 mins.
- The buffer was removed from the column (MeCN:H₂O 1:1) and stored for 48 h in IPA.
- Columns were then re-equilibrated with mobile phase for 400 column volumes and sample injected every 10 mins.
 - % Equilibrated_{t=x} = $(k_x/k_{final}) \times 100$
- I lead columns were found to equilibrate faster
- lote: ACF 3 C18 tested with MeOH:H $_{2}$ O 75:25 (v/ ACE 3 HILIC-A (2'-deoxyguanosine) ACE 3 HILIC-A (Fresh - - - ACE 3 HILIC-A (Used

ACE 3 HILIC-B (2'-deoxyguanisine)

CE 3 C18 (2'-deoxyguanosine)

90

<u>ଚ୍ଚ</u> 100

110

- Column equilibration to form a stable water-enriched layer is vitally important for reproducible chromatography.
- Long and variable equilibration times are often cited as a negative aspect of the HILIC technique.

, 100

110

100

90

110

- > This work aims to assess key isocratic and gradient method parameters and how they affect column equilibration.
- **Gradient equilibration:** The effect of post gradient re-equilibration time was investigated (re-equilibration times equivalent to 10, 20, 30 and 200 column volumes).

For all experiments, a test mix containing 4-hydroxybenzoic acid (acid), salbutamol (base) and 2'-deoxyguanosine (polar neutral) was injected.

	than freshly packed columns, potentially due to the presence of residual non-aqueous packing	% Equilibra 06 06	0		@ ACE	3 HILIC-B (Fresh) HILIC-B (Used)	
	solvents in pores of freshly packed columns.	70		ACE 3 HIL	IC-N (2'-deoxyguan	isine)	
	Equilibration times for used ACE HILIC columns were similar to the ACE C18.	001 ili 001 ded 00	1	9 999999 9	<u></u>		•••
	Under these conditions, fresh bonded phases appear to equilibrate faster than bare silica.	nb3 % 80 70			ACE 3	HILIC-N (Fresh) HILIC-N (Used)	
Mobile Flow ra	e phase: 10 mM Ammonium formate pH 3.0 in MeCN/H ₂ O 90:10 (v/v) ate: 0.6 mL/min Temp: 35 °C, Detector: 214 nm Injection volume: 5	5 μL	0	100	200 Column Volumes	300	400

Stable retention: overlays of 10 successive socratic: Observations injections under different conditions Similar trends were observed for acidic **HILIC-N** (4-hydroybenzoic acid), neutral (2'-10 mM, 90% MeCN deoxyguanosine) and basic (salbutamol) **Fresh column** %RSD analytes. 0.19 Stable retention was achieved on all ACE **HILIC-N** phases once equilibrated. 10 mM, 90% MeCN **Used column** Fresh columns took longer to equilibrate %RSD than used columns 0.10 Minimum 20 column volumes for used columns **HILIC-N** Minimum 60-80 column volumes for fresh 10 mM, 94% MeCN columns %RSD Higher ionic strength mobile phases may 0.33

4. Ionic Strength

- All three phases were equilibrated with 5, 10 and 20 mM ammonium formate pH 3.0 in MeCN:H₂O 9:1 (v/v) for 400 column volumes. Sample injected every 10 mins.
- > All three phases were >95% equilibrated after 20 column volumes with 5 and 10 mM buffer concentrations.
- The 20 mM ionic strength mobile phase required slightly longer to equilibrate (up to 50 column volumes

ACE HILIC-B (2'deoxyguanosine)

ACE HILIC-N (2'deoxyguanosine)

ACE 3 HILIC-A 20 mM

ACE 3 HILIC-B 20 mM

400

5. Percentage Organic

- All three ACE phases were equilibrated with 10 mM ammonium formate pH 3.0 in MeCN:H₂O at different volume fractions for 400 column volumes. Sample injected every 10 mins.
- 20 column volumes was sufficient to equilibrate (>95%) all ACE phases under most conditions.
- 94% MeCN took >100 column volumes to equilibrate on the ACE HILIC-B and HILIC-N.
- This implies that formation of a stable water layer takes longer when using

110	ACE 3 HILIC-A (2'-deoxyguanosine)	6. I
100		
	ACE 3 HILIC-A 80:20	r
	ACE 3 HILIC-A 85:15	
2	ACE 3 HILIC-A 90:10	
80	× ACE 3 HILIC-A 94:6	
70		
	ACE 3 HILIC-B (2'-deoxyguanosine)	

ba	100 -	₽ ⁻	₽~А.Д.8~А~8-<u>Д</u>.8~<u>8</u>~8~8-8-<u>9</u>-8
) rate	00		ACE 3 HILIC-B 80:20
uilik	90 -		ACE 3 HILIC-B 85:15
% Eq	0.0		ACE 3 HILIC-B 90:10
0	80 -		× ACE 3 HILIC-B 94:6
	70 -		
		ACE 3 HILIC-N (2'-deoxy	/guanosine)
	110		

on the HILIC-A).

low-aqueous containing mobile phases in HILIC mode for **bonded phases**, possibly due to the presence of a more substantial water-enriched region at the particle surface.

- require longer to equilibrate.
- Formation of a stable water-enriched layer may be substantially slower when using mobile phases containing ~5-6% water.

7. Gradient Equilibration

- > A HILIC gradient was run on each phase and the post-gradient equilibration time varied:
 - > 10, 20, 30 and 200 column volumes
 - > 1 column volume = 0.75 minutes (100 x 3.0 mm column, 0.6 mL/min)
 - 10 injections performed, 1st injection discarded
- > The length of the re-equilibration stage was found to affect analyte retention.

8. Gradient Equilibration

- Replicate injections (n=9) for each re-equilibration experiment showed excellent reproducibility (%RSD typically <0.3).
- This implies that re-equilibration times of 10-20 column volumes should be generally applicable to obtain reproducible chromatography.
- It is essential to accurately control gradient re-equilibration times in HILIC mode. Care should also be taken to account for differing system dwell volumes.
- Important to carry out a blank run before injecting or discard the first injection.

		Retention time (%RSD*)			
	Re-equilibration	4-Hydroxybenzoic acid	2'-Deoxyguanosine	Salbutamol	
۲	10 column volumes	1.178 (0.09)	4.134 (0.22)	4.547 (0.25)	
ပ်	20 column volumes	1.300 (0.06)	4.574 (0.18)	4.429 (0.12)	
⊒	30 column volumes	1.330 (0.11)	4.683 (0.21)	4.446 (0.13)	
L	200 column volumes	1.343 (0.61)	4.788 (0.61)	4.514 (0.46)	
ß	10 column volumes	1.351 (0.18)	5.559 (0.09)	4.244 (0.14)	
- -	20 column volumes	1.398 (0.30)	5.712 (0.07)	4.441 (0.13)	
	30 column volumes	1.409 (0.31)	5.810 (0.09)	4.508 (0.15)	
H	200 column volumes	2.222 (0.14)	6.003 (0.41)	4.639 (0.61)	
7	10 column volumes	1.367 (0.08)	5.636 (0.05)	4.349 (0.12)	
- -	20 column volumes	1.488 (0.08)	5.857 (0.04)	4.666 (0.08)	
	30 column volumes	1.602 (0.08)	6.028 (0.05)	4.767 (0.13)	
	200 column volumes	1.816 (0.11)	5.765 (0.76)	4.917 (0.43)	

9. Conclusions

- > It is essential to fully and consistently equilibrate HILIC columns to obtain reproducible chromatography.
- > With adequate equilibration, ACE HILIC columns show similar reproducibility to reversed-phase columns.
- Fresh columns should be equilibrated for at least 60-80 column volumes before injecting.
- Equilibration times for used columns are shorter, 20 column volumes is usually sufficient.
- > Under certain conditions, column equilibration may take longer than 20 column volumes.
 - High buffer concentrations
 - Low percentage of water in the mobile phase
- For HILIC gradients, varying the post-gradient re-equilibration time affects analyte retention and potentially selectivity. It is crucial to accurately control and record re-equilibration times.

>	When transferring HILIC gradients, instrument dwell times may need
	compensating for to maintain consistent re-equilibration times.

