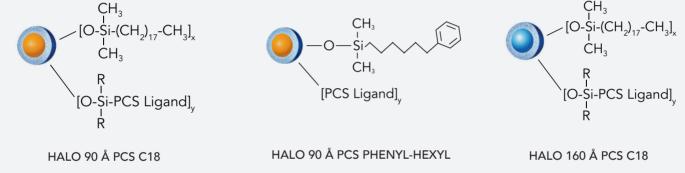
HALO®


C18 PHENYL-HEXYL PEPTIDE

POSITIVELY EXCEPTIONAL PERFORMANCE FOR BASIC COMPOUNDS

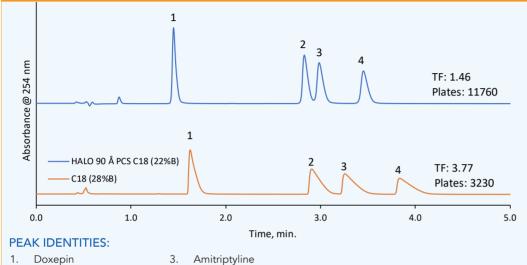
HALO[®] PCS (Positive Charged Surface)

POSITIVELY EXCEPTIONAL RESULTS FOR BASIC COMPOUNDS

Built upon proven Fused-Core[®] technology for speed and efficiency, the HALO[®] PCS column products are positively charged surface chemistries designed to deliver improved peak shapes for basic compounds observed with standard C18 and Phenyl-Hexyl chemistries. Ideal for use with low ionic strength mobile phases, HALO[®] PCS maintains peak symmetry at higher loading capacities and provides alternate selectivities from other C18 and Phenyl-Hexyl bonded phases. Available in both a 90 Å and 160 Å pore size for small molecule and peptide analysis. The columns are optimized to deliver performance for reproducible, high efficiency LC and LCMS separations.

FEATURES: PCS C18 AND PCS PHENYL-HEXYL for Small Molecule Separations

- Excellent peak shape and increased loading capacity for basic compounds
- UHPLC and LCMS compatible
- Alternate L1 selectivity (PCS C18)
- Alternate L11 selectivity (PCS Phenyl-Hexyl)
- Built upon Fused-Core® technology for fast, efficient and reliable separations


FEATURES: PCS C18 for Peptide Separations

- Significantly improved peak widths and symmetry for basic peptides compared to traditional peptide C18 stationary phases
- Designed for performance with formic acid avoiding LCMS signal suppression from TFA
- UHPLC and LCMS compatible
- Alternate L1 selectivity with optimized pore size for peptide separations

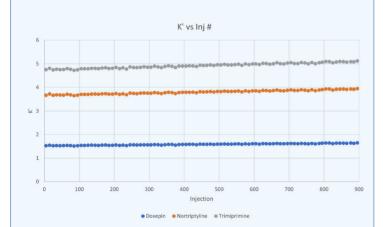
SEPARATION USING HALO® PCS C18 COMPARED TO C18

A mix of four antidepressants is separated using the HALO 90 Å PCS C18 column. The positive charged surface (PCS) stationary phase is ideal for basic analytes when using low ionic strength mobile phases such as formic acid. Improved tailing factor and efficiency are observed when compared to a traditional (uncharged) C18 stationary phase.

TEST CONDITIONS:

Column: HALO 90 Å PCS C18, 2.7 µm, 2.1 x 100 mm Part Number: 92812-617 Column: C18, 2.7 µm, 2.1 x 100 mm Mobile Phase A: Water, 0.1% Formic Acid Mobile Phase B: Acetonitrile, 0.1% Formic Acid Isocratic: HALO® PCS C18: 22 %B C18: 28 %B Flow Rate: 0.4 mL/min. Back Pressure: 242 bar Temperature: 30 °C Injection: 0.5 µL (31 µg) Sample Solvent: 75/25 Water/ACN Wavelength: PDA, 254 nm Flow Cell: 1 ul Data Rate: 40 Hz Response Time: 0.05 sec. LC System: Shimadzu Nexera X2

STABILITY

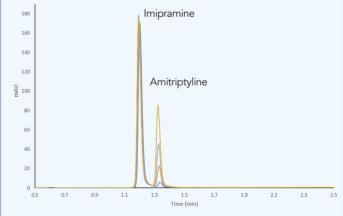

Nortriptyline

2.

Panel of antidepressants screened with 900 injections demonstrating the excellent stability of HALO® PCS C18.

4.

Trimipramine

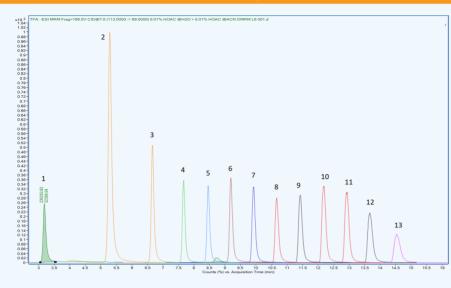


TEST CONDITIONS:

Column: HALO 90 Å PCS C18, 2.7 µm, 2.1 x 100 mm Part Number: 92812-617 Mobile Phase: A: Water, 0.1% Formic Acid B: Acetonitrile, 0.1% Formic Acid Isocratic: 20 %B Flow Rate: 0.6 mL/min. Back Pressure: 244 bar Temperature: 60 °C Injection: 0.5 μ L Sample Solvent: 80/20 Water/ ACN Wavelength: PDA, 254 nm Flow Cell: 1 μ L Data Rate: 40 Hz Response Time: 0.025 sec. LC System: Shimadzu Nexera X2

LOADABILITY ADVANTAGE

Over the range of 0.75 to 15 ng injected on the column, the HALO[®] PCS Phenyl-Hexyl maintains baseline resolution under formic acid mobile phase conditions.


TEST CONDITIONS:

Column: HALO 90 Å PCS Phenyl-Hexyl, Flow Rate: 0.4 ml/min 2.7 µm, 2.1 x 100 mm Back Pressure: 242 bar Mobile Phase: Temperature: 35 °C A: Water + 0.1% Formic Injection: 1.0 µL B: ACN + 0.1% Formic Sample Solvent: 75/25 Water/ACN Gradient: Time %В Wavelength: PDA, 254 nm 0.0 25 Flow Cell: 1 µL 3.0 35 Data Rate: 100 Hz 3.1 85 Response Time: 0.025 sec. 3.6 85 LC System: Shimadzu Nexera X2 3.7 25 5.0 25

HALO 90 Å PCS C18

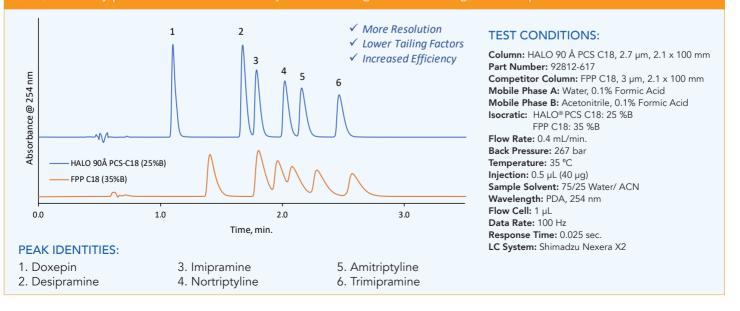
SEPARATION OF SHORT AND LONG CHAIN PFAS USING HALO® PCS C18

PEAK IDENTITIES

- 1. Trifluoroacetic acid (TFA) 2. Perfluoropropionic acid - (PFPrA) 3. Perfluorobutanoic acid - (PFBA) 4. Perfluoropentanoic acid - (PFPeA) 5. Perfluorohexanoic acid - (PFHxA) 6. Perfluoroheptanoic acid - (PFHpA) 7. Perfluorooctanoic acid - (PFOA) 8. Perfluorononanoic acid - (PFNA)
- 9. Perfluorodecanoic acid (PFDA)
- 10. Perfluoroundecanoic acid (PFUnA)
- 11. Perfluorododecanoic acid (PFDoA)
- 12. Perfluorotridecanoic acid (PFTrA) 13. Perfluorotetradecanoic acid - (PFTA)

TEST CONDITIONS:

Column: HALO 90 Å PCS C18, 2.7 μm,	Gradient:	Time	%В
2.1 x 100 mm		0.0	20
Part Number: 92812-617		5.0	80
Delay Column: HALO® PFAS Delay,		12.0	90
2.7 μm, 3.0 x 50 mm		18.0	90
Part Number: 92113-415		18.1	20
Mobile Phase A: Water/ 0.01% Acetic Acid		23.0	END
Mobile Phase B: ACN/ 0.01% Acetic Acid	Flow Rate:	0.5 mL/i	min.

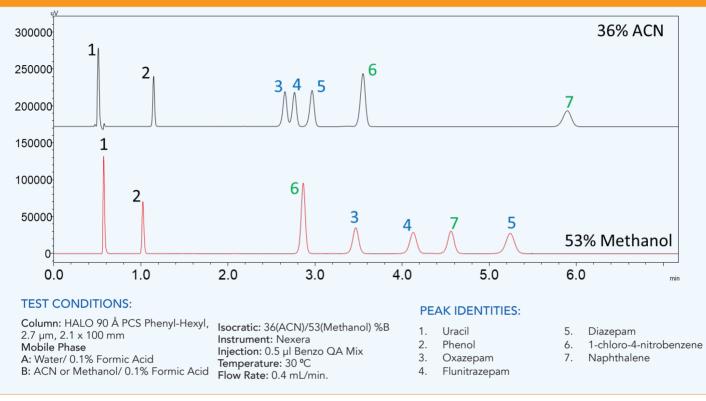

Temperature: 40 °C Detection: -ESI MS/MS Injection Volume: 2.0 µL MS System: Agilent 6400 series LC System: Agilent 1200 series Data Courtesy of: Center for PFAS Solutions (New Castle, DE)

MS CONDITIONS:

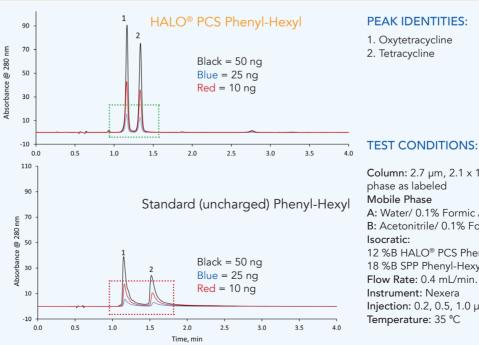
Gas Temp: 130 °C Nebulizer: 25 psi Gas Flow: 11 L/min Sheath Gas Heater: 250 °C Capillary: 3500 V

FUSED-CORE® ADVANTAGE

(PCS) stationary phase is ideal for basic analytes when using low ionic strength mobile phases such as formic acid.



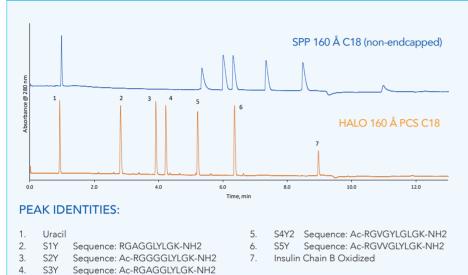
HALO 90 Å PCS PHENYL-HEXYL


EFFECT OF ORGANIC MODIFIER ON HALO® PCS PHENYL-HEXYL

phenyl stationary phase, resulting in increased retention for peaks 3, 4, and 5 (bases) and decreased retention for

DEMONSTRATION OF PEAK SHAPE IMPROVEMENT & LOADABILITY WITH HALO® PCS

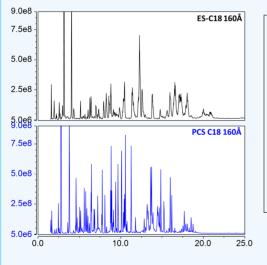
HALO[®] PCS peak widths are 50% smaller with HALO[®]


Column: 2.7 µm, 2.1 x 100 mm A: Water/ 0.1% Formic Acid B: Acetonitrile/ 0.1% Formic Acid 12 %B HALO® PCS Phenyl-Hexyl 18 %B SPP Phenyl-Hexyl Injection: 0.2, 0.5, 1.0 µL (10,25,50 ng)

HALO 160 Å PCS C18 PEPTIDE

THE PCS ADVANTAGE

A synthetic panel of basic peptides is screened on the HALO 160 Å PCS C18 compared to the traditional C18 stationary phase. While using low ionic strength mobile phases such as formic acid the positively charged surface stationary phase shows significantly better peak widths and symmetry for more basic peptides when compared to a traditional non-endcapped peptide C18 stationary phase.



TEST CONDITIONS:

Column: HALO 160 Å PCS C18 , 2.7 $\mu m,$ 2.1 x 100 mm Part Number: 92812-617 Comparison Column: SPP 160 Å C18, 2.7 µm, 2.1 x 100mm Mobile Phase A: Water/ 0.1% Formic Acid Mobile Phase B: Acetonitrile/ 0.1% Formic Acid Gradient: Time %B 0.0 2 10.0 35 Flow Rate: 0.3 mL/min. Temperature: 30 °C Injection Volume: 1.0 μ L Wavelength: PDA, 280 nm Flow Cell: 1 µL Data Rate: 100 Hz Response Time: 0.025 sec. LC System: Shimadzu Nexera X2

IMPROVING PEAK WIDTH USING HALO® PCS C18

A separation of Trastuzumab tryptic digest is performed on two HALO[®] columns, the 160 Å ES-C18 and the 160 Å PCS C18 phases. By using a positively charged stationary phase (PCS C18) with low ionic conditions allows for an alternative selectivity and better separation of the peptides.

	PV	V50% _{xic}	
0.250			0.223
0.200			0.170
0.150		0.128	_
0.100	0.085		
0.050	0.047	0.052	
0.000	1	2	3
ESC18 PCS C18			

TEST CONDITIONS:

Column: HALO 160 Å ES-C18 , 2.7 µm, 2.1 x 150 mm Part Number: 92122-702 Column: HALO 160 Å PCS C18 , 2.7 µm, 2.1 x 150 mm Part Number: 92112-717 Mobile Phase A: Water + 0.1% Formic Acid Mobile Phase B: Acetonitrile + 0.1% Formic Acid Gradient: Time %B 0.0 - 3 30.0 50 30.1 95 33.0 95 33.1 3 37.0 3 Flow Rate: 0.4 mL/min. Pressure: 465 bar Temperature: 60 °C Injection Volume: 1 µL Sample: Trastuzumab Tryptic Digest (1.25 µg/µL) Sample Solvent: Refer to Digestion Procedure LC System: Shimadzu Nexera X2

 #
 Tryptic Peptide
 XIC
 t_{R (min)}

 1
 AEDTAVYYC(Carbamidomethyl)SR
 667.7877
 ES-C18: 6.41 PCS C18: 4.60

 2
 TPEVTC(Carbamidomethyl)VVVDVSHEDPEVK
 713.6807 Z-3
 ES-C18: 12.28 PCS C18: 10.11

 3
 TVAAPSVFIFPPSDEQLK
 973.5171 Z-2
 ES-C18: 17.12 PCS C18: 14.47

System: QExactive HF ESI positive polarity 300-2000 m/z Source voltage: 3.2kV Sheath Gas: 40 Aux Gas: 20 Aux Gas Temp: 275°C Capillary Temp: 320°C µscans: 1 Max Injection Time: 200 msec S-Lens RF: 50

SPECIFICATIONS

ATTRIBUTE	90 Å PCS C18	90 Å PCS Phenyl-Hexyl	160 Å PCS C18
Ligand	dimethyloctadecylsilane	6-phenylhexyldimethylsilane	dimethyloctadecylsilane
Particle Size (µm)	2.7	2.7	2.7
Pore Size (Å)	90	90	160
USP #	L1	L11	L1
Carbon Load (%)	7.4	6.1	5.09
Surface Area(m²/g)	125	125	90
Endcapped (Y/N)	Yes	Yes	Yes
Low pH Limit/Max T	2/60 °C	2/60 °C	2/60 °C
High pH Limit/Max T	7/40 °C	7/40 °C	7/40 °C
100% Aqueous Compatible	No	Yes	Yes

PART NUMBERS

	ensions: ID x gth (in mm)	90 Å PCS C18	90 Å PCS Phenyl-Hexyl	160 Å PCS C18
	1.5 x 50	9281X-417	9281X-418	9211X-417
	1.5 x 100	9281X-617	9281X-618	9211X-617
1	1.5 x 150	9281X-717	9281X-718	9211X-717
	2.1 x 50	92812-417	92812-418	92112-417
2	2.1 x 100	92812-617	92812-618	92112-617
2	2.1 x 150	92812-717	92812-718	92112-717
	3.0 x 50	92813-417	92813-418	92113-417
	3.0 x 100	92813-617	92813-618	92113-617
	3.0 x 150	92813-717	92813-718	92113-717
	4.6 x 50	92814-417	92814-418	92114-417
4	4.6 x 100	92814-617	92814-618	92114-617
4	4.6 x 150	92814-717	92814-718	92114-717
	4.6 x 250	92814-917	92814-918	

HALO [®] GUARD COLUMNS 3 PACK			
Dimensions: ID x Length (in mm)	90 Å PCS C18	90 Å PCS Phenyl-Hexyl	160 Å PCS C18
2.1 x 5	92812-117	92812-118	92112-117
3.0 x 5	92813-117	92813-118	92113-117
4.6 x 5	92814-117	92814-118	92114-117
Guard Column Holder		94900-001	

INNOVATION YOU CAN TRUST – PERFORMANCE YOU CAN RELY ON

HALO®

Manufactured by:

halocolumns.com

HALO and Fused-Core are registered trademarks of Advanced Materials Technology, Inc.

Advanced Materials Technology is an ISO 9001:2015 Certified Company